Introduction to PET/MRI Combined Scanner and Potential Pediatric Applications

Ruth Lim, M.D.
Division of Pediatric Radiology
Division of Nuclear Medicine and Molecular Imaging
Assistant Radiologist, Massachusetts General Hospital
Instructor in Radiology, Department of Radiology
Harvard Medical School

Slides not to be reproduced without permission of author
Learning Objectives

• Illustration of PET/MRI combined scanner configuration
• Advantages and disadvantages, capabilities and limitations of combined scanner
• Presentation of some early results
• Potential pediatric applications of combined PET/MRI scanning
Siemens BrainPET prototype scanner installed inside the MAGNETOM Trio MR Scanner (left); BrainPET withdrawn from the MR scanner for stand alone MR operation (right)

Slides not to be reproduced without permission of author
PET Detector Basics

- PMT: path of electrons deviated by magnetic field, therefore unsuitable for PET/MRI combined scanner.
Strategies for MR-compatible PET Detectors

- PET detector components – selected and designed for minimal interference with magnetic and radiofrequency fields of MRI system
 - Position PMT detectors remotely from magnetic connected by optical fibers
 - Semi-conductor-based detectors
 - Avalanche Photodiodes (APD)
 - Silicon photomultipliers (SiPM)
Avalanche Photodiode (APD) detector

- APD is insensitive to even high magnetic fields up to 9.4T

BrainPET Scanner Design

- Standard MR 3T tunnel (60 cm ID)
- BrainPET insert (35 cm ID)
- 32 Detector Cassettes
- 6 LSO Blocks/Cassette
 - crystal size $2.5 \times 2.5 \times 20 \text{ mm}^3$
 - 12 x 12 crystals/block
 - 3 x 3 array of Hamamatsu APDs
- 192 LSO Blocks total
- 1732 APDs total
- 19.25 cm axial / 30 cm transaxial
- Air/Water cooling
MR Coils

- Coils are positioned inside the PET-insert
 - Minimize field inhomogeneity due to conductivity of PET detectors

- Standard bird cage transmit-receive head coil with inner head coil
 - 8-channel head coil designed to minimize components within the PET field-of-view (19.5 cm)
Combined PET and MRI - Why?

Simultaneous acquisition of PET and MRI

- More precise co-registration and anatomic localization
- Potential for simultaneous quantitative dynamic PET and contrast-enhanced MRI
- MRI-based motion-correction techniques
- Compared to separately-acquired MRI and PET, shorter acquisition time → less sedation/GA
Combined PET and MRI - Why?

PET-MRI vs. PET-CT

– Advantages of MRI

• No ionizing radiation → dose reduction
• Better characterization of soft tissues, bone marrow, brain and spine
Combined PET and MRI – Why?

PET-MRI vs. PET-CT

– Disadvantages/limitations of MRI

• Poorer characterization of cortical bone, lungs/lung nodules
• MRI takes longer that CT → longer sedation/GA
• (NB – sedation often required for pediatric PET)
• Contraindicated or unhelpful in those with metallic implants, pacemakers, etc.
• Attenuation correction is challenging
 – Segmentation approaches
 – Atlas-based approaches
Combined PET and MRI – Why?

PET-MRI image fusion
- Precise anatomic localization of abnormal uptake
 - Distinguish physiologic uptake versus tumor
- Potential quantitation of physiologic function through dynamic analysis of contrast-enhancement and radiotracer accumulation
 - More accurate and precise ROIs based on MR anatomy
 - Tumor characterization
 - Normal tissue characterization, e.g.:
 - Renal GFR
 - Myocardial motion, perfusion, viability
Limitations of Current PET-MRI Combined Scanner

- Small bore size
 - I.D. of head coil = 22 cm
 - I.D. of transmit-receive coil = 26 cm
 - Some adult heads have been too large to fit

- Coil limitations
 - Head coil has closed-end
 - ? Hand or foot imaging possible
 - Transmit-receive coil has tubular configuration but sub-optimal SNR
 - Infant or small child could potentially fit
 - Only 8-channel
Limitations of Current PET-MRI Combined Scanner

- Location of scanner
 - Off-campus imaging research facility
 - No nursing, sedation, GA

- FDA
 - MRI scanner is FDA-approved, but PET insert is not

- IRB
 - Few clinical indications for PET in infants and small children
Early Results

Simultaneous MR-PET Data Acquisition

20 cm diameter phantom
Hole size range 2.5-6 mm
Center-to-center = 4 times hole diameter

PET
• 1.5 mCi F-18 water
• 20 min acquisition scan
• OSEM 3D reconstruction

MR
• FLASH (shown), TSE, MP-RAGE sequences run simultaneously
• CP coil

Catana/Rosen/Sorensen (MGH)
Simultaneous MR-PET Data Acquisition

54 year old with malignant glioma and cutaneous extension

PET

• 5.45 mCi FDG injected approx. 2.5 hours prior to data acquisition
• OSEM 3D reconstruction
• Attenuation correction performed based on the MR data

MR

• T1 MP-RAGE, T2 SPACE (shown), FLAIR, DTI, CSI, SVS sequences run simultaneously
• CP coil
Simultaneous MR-PET Data Acquisition

17-old male with epilepsy

PET
- ~5 mCi FDG injected ~2.5 hours prior to data acquisition
- OSEM 3D reconstruction
- Attenuation correction performed based on the MR data

MR
- T1 MP-RAGE, T2 SPACE, FLAIR, DTI, CSI, SVS sequences run simultaneously
- 8 channel coil

Fused MR-PET

Catana/Benner/van der Kouwe/Grant/Madan/Rosen/Sorensen (MGH)

Slides not to be reproduced without permission of author
Simultaneous MR-PET acquisition

Diffusion Tractography

Fused PET - MR

Surface Rendering

High Res Anatomy

MRA
Catana/Rosen/Sorensen (MGH)
Early Results - the complete version:

Oncology Investigations

Sunday, June 14
4:15 PM - 5:45 PM
Room 711

Presentation Time:
5:27 PM - 5:39 PM

Simultaneous MR-PET of Human Brain Tumors - Initial Experience

Ciprian Catana; Thomas Benner; Elizabeth Gerstner; Dominique Jennings; Larry Byars; Michael Hamm; Christian Michel; Matthias Schmand; Bruce Rosen; Gregory Sorensen
Potential Pediatric Applications of PET-MRI

- In what clinical scenarios is MRI a more effective modality than CT?
 - Brain tumors
 - Seizure disorders
 - Head and neck tumors
 - Body tumor imaging, including but not limited to:
 - Lymphoma
 - Neuroblastoma
 - Liver tumors
 - Pelvic tumors
 - Musculoskeletal tumors
Potential Pediatric Applications of PET-MRI (cont’d)

• Screening of multiple hereditary neoplasms for malignant transformation
 – Neurofibromatosis
 – Multiple hereditary osteochondromas
 – Ollier / Maffucci syndromes

• Developing MR techniques:
 – Diffusion-weighted MRI - lymphoma
 – Functional MRI – ADHD, autism, developmental disorders
 – MR spectroscopy – tumor, metabolic disorders
 – Arterial Spin Labelling - perfusion
 – BOLD imaging - oxygenation
Potential Pediatric Applications of PET-MRI (cont’d)

• Non-18F-FDG radiotracers:
 – Bone scan - 18F-NaF
 – Amino acid analogs - e.g. 11C-MET, 18F-FET, 18F-FACBC
 – Other tumor proliferation - e.g. 18F-FLT
 – Myocardial perfusion – e.g. 15O-H₂O, 13N-NH₃
 – Hypoxia imaging – e.g. 18F-MISO, 64Cu-ASTM
 – Neurotransmitters and receptors – e.g. 18F-DOPA, 11C-raclopride
Potential Pediatric Applications of PET-MRI

Brain Tumor

Choroid Plexus Carcinoma

Where is the tumor?

18F-FDG PET

Fused PET/MRI
Potential Pediatric Applications of PET-MRI
Brain Tumor

Follow-up MRI
Residual tumor has grown
Potential Pediatric Applications of PET-MRI Brain Tumor

7 year-old female with bithalamic astrocytoma
Potential Pediatric Applications of PET-MRI
Brain Tumor

11C-Methionine PET and PET-MRI fusion
Potential Pediatric Applications of PET-MRI Seizure

Right mesial temporal sclerosis
Patient underwent right temporal lobectomy – now seizure-free

Slides not to be reproduced without permission of author
Potential Pediatric Applications of PET-MRI Lymphoma

Axial Diffusion-Weighted MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Lymphoma

Axial T2 MRI for anatomic localization and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Neuroblastoma

Whole-Body Coronal STIR MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI
Musculoskeletal tumor

L5 metastasis from osteosarcoma of left femur

Slides not to be reproduced without permission of author
Potential Pediatric Applications of PET-MRI Metastatic Staging

Ewing sarcoma of right pelvis
Coronal STIR MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Metastatic Staging

Ewing Sarcoma
Coronal STIR MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Neurofibromatosis

Whole-Body Coronal STIR MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Neurofibromatosis

Whole-Body Coronal STIR MRI and 18F-FDG PET
Potential Pediatric Applications of PET-MRI Hypoxia Imaging

Chordoma
18F-MISO PET and Sagittal T2 FS MRI

Slides not to be reproduced without permission of author
Challenges in Development of PET-MRI Whole Body Imaging

• Integrated system and longitudinal field of view
 – Is it better to have side-by-side MR and PET systems since table will need to move anyway?

• Attenuation correction
 – Body tissues not as homogeneous as brain, and therefore automated segmentation is more challenging

• Need for fast whole-body MRI sequences
 – Minimize motion artifacts and bladder filling
Conclusions

- For pediatric conditions in which MRI is a more effective imaging modality than CT, combined PET/MRI holds great potential to reduce radiation dose and amount of sedation/anesthesia.

- Currently available PET/MR systems have a small bore that can accommodate adult brain imaging. Body imaging of infants and small children has not yet been attempted, but is theoretically possible.
Conclusions

• PET/MR imaging of infants and small children is now logistically difficult due to unavailability of off-campus sedation/anesthesia and the rarity of clinically-indicated PET scan in this age group

• Pediatric brain applications include tumor and seizure

• Pediatric body applications are also numerous and include: lymphoma, neuroblastoma, neurofibromatosis, multiple hereditary cartilage tumors
 – Whole-Body MRI and Whole-Body 18F-FDG PET (separately acquired) are already being used in some of these patients!
For more details...

Tuesday, June 16
12:30 PM - 2:00 PM
PET/MR
Session Type: SNM Continuing Education
Room 716AB