Quality Control and Non-Imaging Instrumentation
What can go wrong?

Kathy Thomas MHA, CNMT, PET
SNM Annual Meeting - Toronto
Objectives

- Explain the purpose of quality control procedures on non-imaging instrumentation in nuclear medicine including:
 - Dose calibrators
 - Well counters
 - Thyroid/surgical probes
- Describe the pitfalls and bloopers associated with non-imaging equipment
Dose Calibrator: Chambers

- Sealed, pressurized container that has a voltage potential applied to it.
- Sensitivity is inversely related to the pressure of the inert gas in the chamber.
Dose Calibrator: Chambers

- Interaction of the radiation with the pressurized gas causes current to flow from the anode to the cathode.
- The current flow is detected and measured by the electronic circuitry which converts the ionizations into a displayed activity.

Let's take a look inside the chamber:

[Diagram of a cylindrical chamber with anode and cathode marked, and voltage potential applied from anode to cathode.]

The voltage potential is applied from anode to cathode.
Dose Calibrator: Chambers

Pressing the corresponding nuclide button or entering a calibration number displays activity for a specific isotope.

Let's take a look inside the chamber:

- Pressurized Gas (inert)
- Anode
- Cathode

The voltage potential is applied from anode to cathode.
Dose Calibrators

- Calibration tests
 - Daily test
 - Constancy
 - Accuracy
- Quality Control
 - Linearity
 - Geometry

Slides are not to be reproduced without permission of author.
Acceptance/QC Testing

- **Daily or Self Test - Chamber:**
 - Performed daily prior to measuring any patient dose
 - **Auto Zero/electrometer sensitivity** – measures voltage drift since the last measurement.
 - **Background** – measures, stores and automatically subtracts from all measurements
 - **Chamber voltage/bias** – measurement compared with the factory value.
 - **Data (software) check** – internal assessment of the built-in nuclide data
 - **Accuracy/Constancy** – performed with pre-defined reference sources

Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing

- **Constancy**¹,²:
 - Also known as precision testing, determines the reproducibility of measurements from day to day
 - Uses a long-lived reference source of known activity (e.g. Cs-137, Co-57) traceable to the National Bureau of Standards (NIST or ANSI)
 - Measured at each of the commonly used radionuclide settings and compared to expected values, corrected for decay.
 - Measurements should be within ± 5-10% of the expected value
 - *Important:* Geometry plays a key role in measurements

Consistent Geometry

- Vial placement must be consistent:
 - Centered
 - Upright
 - Not touching sides
Consistent Geometry

- Inconsistent placement affects:
 - activity reading
 - percent deviation
 - comparison to previous data
Constancy Testing

![Constancy Chart]

Days: 0 to 25
Activity: 188.00 to 195.00

Slides are not to be reproduced without permission of the author.
Acceptance/QC Testing

- Accuracy1,2:
 - Assesses the ability of the dose calibrator to provide a true measure of the activity of different gamma energies.
 - At least two different long-lived NIST or ANSI traceable sources of known activity should be used
 - One source should have a photon energy between 100-500 keV
 - Measurements should be within \pm 5-10\% of the expected value
 - \textit{Important:} Consistent geometry required

Acceptance/QC Testing

Accuracy Test

Performed 11-22-2008

<table>
<thead>
<tr>
<th>Source</th>
<th>Cal Date</th>
<th>S/N</th>
<th>Activity mB</th>
<th>Activity mCi</th>
<th>Corrected for current date</th>
<th>Actual</th>
<th>%Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co57</td>
<td>01-Jul-08</td>
<td>A9538</td>
<td>213.4 mB</td>
<td>5.76 mCi</td>
<td>1.24 mCi</td>
<td>1.22 mCi</td>
<td>1.9%</td>
</tr>
<tr>
<td>Ba133</td>
<td>01-Dec-02</td>
<td>A9549</td>
<td>8.639 mB</td>
<td>233.48 uCi</td>
<td>211 uCi</td>
<td>214 uCi</td>
<td>1.4%</td>
</tr>
<tr>
<td>Cs137</td>
<td>01-Dec-02</td>
<td>A4519</td>
<td>8.253 mB</td>
<td>223.05 uCi</td>
<td>215 uCi</td>
<td>218 uCi</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

Slides are not to be reproduced without permission of author.
Acceptance/QC Testing

- **Linearity**: Assesses the linear response of the dose calibrator over a wide range of activity from curies or millicuries to microcuries.

- Linearity may be performed using the:
 - **Manual decay method**: a single radioactive source is periodically measured over several days
 - **Calicheck or Lineator System**: a single radioactive source is measured multiple times in a short period of time using various leaded tubes simulating decay from mCi to uCi

- Measurements should be within ± 5% of the expected value

- **Important**: Consistent geometry required for each measurement

Acceptance/ QC Testing - Linearity

Calicheck/Lineator Test -
- determine correction factors:

<table>
<thead>
<tr>
<th>Tube Insert</th>
<th>mCi</th>
<th>Calibration Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black only</td>
<td>209.00</td>
<td>1</td>
</tr>
<tr>
<td>Black and red</td>
<td>120.30</td>
<td>1.737</td>
</tr>
<tr>
<td>Black and orange</td>
<td>66.50</td>
<td>3.142</td>
</tr>
<tr>
<td>Black and yellow</td>
<td>19.40</td>
<td>10.773</td>
</tr>
<tr>
<td>Black and green</td>
<td>5.59</td>
<td>37.388</td>
</tr>
<tr>
<td>Black and blue</td>
<td>1.89</td>
<td>110.582</td>
</tr>
<tr>
<td>Black and purple</td>
<td>0.45</td>
<td>466.517</td>
</tr>
</tbody>
</table>

All measurements completed and recorded within 6 minutes.

Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing - Linearity

- Calicheck/Lineator Test:
 - applying correction factors

<table>
<thead>
<tr>
<th>Tube Insert</th>
<th>Measured Activity mCi</th>
<th>Calibration Factor</th>
<th>Result mCi</th>
<th>% Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>124.50</td>
<td>1</td>
<td>124.5</td>
<td></td>
</tr>
<tr>
<td>Black and red</td>
<td>71.40</td>
<td>1.737</td>
<td>124.0</td>
<td>0.24%</td>
</tr>
<tr>
<td>Black and orange</td>
<td>40.10</td>
<td>3.142</td>
<td>126.0</td>
<td>1.19%</td>
</tr>
<tr>
<td>Black and yellow</td>
<td>11.50</td>
<td>10.773</td>
<td>123.9</td>
<td>0.49%</td>
</tr>
<tr>
<td>Black and green</td>
<td>3.31</td>
<td>37.388</td>
<td>123.8</td>
<td>0.60%</td>
</tr>
<tr>
<td>Black and blue</td>
<td>1.11</td>
<td>110.582</td>
<td>122.7</td>
<td>1.40%</td>
</tr>
<tr>
<td>Black and purple</td>
<td>0.26</td>
<td>466.517</td>
<td>122.7</td>
<td>1.45%</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>123.9</td>
<td></td>
</tr>
</tbody>
</table>

Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing

- Geometric Variation/Calibration1,2:
 - Assesses the effect of sample volume and/or configuration in a vial or syringe on the measurement of a sample’s activity

 - Type of container and syringe (glass or plastic)
 - Depth

Acceptance/ QC Testing

- **Geometric Calibration:** Container
 - Use a glass or plastic vial or syringe
 - Measure/add 1 ml of activity to the container
 - Measure/record the activity
 - Add one additional ml of saline or water
 - Measure/record the activity
 - Repeat process until the container is full
 - Plot the results and note possible deviations not attributed to decay
 - **Important:** maintain consistent geometry for each measurement

Notes:
Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing

- **Geometric Variation:** Depth\(^{1,2}\):
 - Use a glass or plastic vial
 - Measure/add 5-10 ml of activity to the vial
 - Measure the vial in 1 cm intervals from the bottom to the top of the chamber
 - Plot the results and note where the change occurs

Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing

- **Diagnostics:**
 - Tests the integrity of the system
 - If attached to a printer, a report is printed containing the system configuration
 - List of nuclides including half life, calibration number (for chamber) and efficiency (for well)
 - Defines user added nuclide information
 - Describes user key assignments
 - Lists test source data
 - Lists chamber and well counter system parameters

Slides are not to be reproduced without permission of author.
Acceptance/ QC Testing

- **Daily – Chamber:**
 - Daily self test – initialized from the display unit
 - Constancy – measured from the display unit or nuclear medicine manager computer-type system

- **Quarterly - Chamber:**
 - System Test or Diagnostics
 - Accuracy
 - Linearity
Potential Errors in QC Testing

- Selecting the incorrect reference source
- Incorrectly positioning the reference source in the chamber:
 - Correct vial source placement: Centered in dipper cup
- Interfering radioactive sources
 - Patients
 - Recently injected patients
 - Patients with residual activity from a recent study
 - Room/Lab Background
 - Patient doses
 - Laboratory waste
- Battery test/test button – not routinely tested can lead to measurement failures
Potential Errors in QC Testing

- Constancy error:
 - Incorrect calibration source information
 - Time/date entered incorrectly
 - Activity entered incorrectly
 - Time/date error on dose calibrator
 - Many years behind
 - Many years in the future
Dose Calibrator

Linearity Pitfalls:
- Incorrect correction factors for each sleeve device
- Bent/damaged sleeve devices
- Geometry errors
 - Volume in syringe or vials
 - Placement of vial/syringe in chamber
Dose Calibrator

- Measurement pitfalls:
 - Inadequate measurement time:
 - \(\geq 6 \) seconds for high activity measurements
 - \(\geq 20 \) seconds for low activity measurements
 - Placement of vial or syringe in chamber:
 - Syringes too large/small for the syringe holder
 - Vials placed incorrectly in dipper cup
Dose Calibrator

- Measurement pitfalls continued:
 - Inappropriate components and/or accessories:
 - Dippers
 - Liners
 - Moly Canister

Slides are not to be reproduced without permission of author.
Probe and Well Technology
Probe and Well Technology

- New Terminology
 - CPM
 - DPM
 - MDA
 - MCA
 - Dead time
 - Real time
 - Live time

- New Terminology
 - Efficiency
 - Conversion factors
 - Sensitivity
 - Chi-Square
 - Energy spectrum

Slides are not to be reproduced without permission of author.
Probe and Well Technology

- **Realtime**: Actual clock time
- **Livetime**: Active counting time - always lower than the Realtime
- **Deadtime**: Time that the instrument is not counting
 - The higher the deadtime the more saturated the crystal
 - Deadtimes greater than 80% can compromise results.

Slides are not to be reproduced without permission of author.
Probe and Well Technology

- **CPM:** Counts per minute – energy from a radioactive source that is detected by the sodium iodide crystal. *Note:* Background is always in CPM.

- **DPM:** Radioactive decay or disintegrations per minute, calculated at a constant rate of 2.22×10^{10} disintegrations per minute or 3.7×10^7 per second per 1 mCi.

- **EFF:** Efficiency – the ratio of detected counts measured by the system to the actual rate of decay, or disintegrations per minute for a specific nuclide or region of interest.

- **CF:** Conversion factors – constants used to convert measurements in cpm to dpm.
Probe and Well Technology

- **MDA:** minimum detected activity – the smallest activity that can be detected by an instrument for a specific nuclide or region of interest.
- **MCA:** multichannel analyzer
- **Chi-square:** performed to assess the reproducibility of measurements
- **Nanocurie:** 1/1000th of a microcurie and most often used to record results from wipe testing of sealed sources or bioassay results.

Slides are not to be reproduced without permission of author.
Probe and Well Technology

Sensitivity
- the ability to detect low levels of activity

<table>
<thead>
<tr>
<th>Capabilities and Features</th>
<th>Nal Drilled-Well Crystal</th>
<th>GM-Tube Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting time required to achieve sensitivity of 1 nCi (2220 dpm), required by regulations</td>
<td>6 to 180 sec (0.1 to 3.0 min)</td>
<td>300 to 6,000 sec (5 min to 10 min)</td>
</tr>
<tr>
<td>Counting time recommended for low background levels</td>
<td>1 to 3 min</td>
<td>at least 20 min</td>
</tr>
<tr>
<td>Offers energy discrimination, which helps users identify radionuclide contaminants with gamma spectroscopy</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Achieves sensitivity of 200 dpm, required for iodine therapy</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Handles high count rates (60,000 cps) before exceeding 30% dead time</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Evaluates identity of radiopharmaceuticals and brachytherapy sources, helps identify contaminants</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Daily
- Daily test and/or Auto Calibration
 - Self calibration - probe and well
 - FWHM - detector resolution - probe and well
- Constancy - measured activity versus decay-corrected activity
- Linearity - performed on some probes/wells
 - Assesses activity over a broad range of energy peaks and corrects for any non-linearity in the NaI detector
 - Provides accurate identification of energy peaks
 - ROI’s in the thyroid uptake and lab tests are based on the energy ranges defined by the Eu-152 energy calibration

Quarterly
- Chi-Square (reproducibility)
Potential Errors in QC Testing

- Selecting the incorrect reference source
- Incorrectly positioning the reference source:
 - Well source: Activity Side Down
 - Probe source: Activity Side Down
- Inconsistent distance
- Interfering radiation
Probe and Well Technology

- **Common Pitfalls:**
 - Reference source information entered incorrectly
 - Reference source activity too high/low
 - Wrong isotope selected for wipe or probe measurement
 - Distance
 - Background errors:
 - Not measured
 - Not subtracted

- **Common Pitfalls:**
 - Contamination
 - Well/probe
 - Interfering radioactive sources
 - Patients
 - Trash
 - External sources
 - X-ray or CT machines

Slides are not to be reproduced without permission of author.
Probe: Surgical

- Calibration
- Nuclide Selection
- Directional Measurements
- Sensitivity
- Volume and Visuals
- Cleaning
- Storage

Slides are not to be reproduced without permission of author.
Probe: Surgical

- **Calibration**
 - Performed just prior to use on the day of surgery:
 - Select the probe for the correct nuclide
 - Perform the constancy test on the nuclide setting required for the surgical procedure
 - Record the results of the constancy test
Probe: Surgical

- Procedure in the surgical suite:
 - Select the proper nuclide for the surgical procedure
 - Understand that the detectors for surgical probes are highly directional.
 - Set the sensitivity settings for the surgical procedure.
 - Correctly adjust the volume and visual controls for the selected surgical procedure.
Probe Surgical

- Following the surgical procedure:
 - Follow the manufacturer’s recommendation for disconnecting the probes (power off/on)
 - Cleaning (per manufacturer’s recommendations)
 - Performed with wipes
 - Sterilization (per manufacturer’s recommendations)
 - Most often performed with a gas.
 - NO HEAT!
 - Storage
 - Clean and/or sterilized, as necessary
 - Fully charged. If equipped, batteries should be fully charged following surgery and just prior to surgery.
Surgical Probe

- **Pitfalls**
 - Constancy or calibration not performed before each use – potential problems not identified
 - Selecting the wrong probe
 - Low battery (on battery operated systems)
 - Incorrect energy selection
Summary

- Quality control procedures for non-imaging equipment is defined/required by:
 - The manufacturer
 - Unless otherwise specified, always follow the manufacturer’s recommendation as outlined in the instrument’s user manual
 - Radioactive Material License
 - State and regulatory agencies
Summary continued – what, more?

- Performed to:
 - Assess the integrity of the system
 - Confirm precision or reproducibility of measurements
 - Avoid repeat procedures
 - Identify potential malfunctions
 - Avoid costly and/or unnecessary maintenance and repair

Slides are not to be reproduced without permission of author.
Conclusions - finally!

- Performed to avoid:
 - the ‘look’ we get from the RSO, medical health physicist or department administrator when cited by regulatory inspectors for non-compliance with required QC testing