Skeletal Scintigraphy

Daniel E. Appelbaum
Director of Nuclear Medicine / PET
Associate Professor of Radiology
University of Chicago

Slides are not to be reproduced without permission of author.
Disclosure Information

• **FINANCIAL DISCLOSURE**: I have no financial arrangements or affiliations to disclose

• **UNLABELED / UNAPPROVED USES DISCLOSURE**: I do not plan to discuss the unlabeled or investigational use of a commercial product

Slides are not to be reproduced without permission of author.
Tc-99m diphosphonate

- Older agents—gallium, pyrophosphate
- “Newer” agents—FDG, F-18
- HDP or MDP are comparable
- dose: 20 - 25 mCi (adults) IV
- T1/2 = 6 hrs
- 140 keV
Diphosphonate distribution

• localization by chemisorption
 – especially to new (amorphous CaP) bone and soft tissue pathology!
• tracer distribution affected by
 – tracer delivery (typically regional blood flow)
 – osteoblastic activity: bone (not marrow) turnover
• local increase or decrease of tracer is a combination of both of these factors
• very sensitive, though often not specific
 – tease out as much specificity as possible
Image acquisition

- single phase (delayed)
 - acquire 2-4 hours post injection
 - high first pass extraction – waiting for soft tissue clearance
 - can delay further: 24 hours or “fourth phase”
Image acquisition

• three phase
 – angiographic for one minute during injection
 – immediate static for extracellular fluid component
 – routine delays
• evaluates perfusion and blood pool
 – Cellulitis vs. osteomyelitis
 – reflex sympathetic dystrophy (RSD)
 – any focal issue
 • E.g. Pelvis (before bladder fills)
Bad things happen around the physis

• Important for pediatric cases
 – infection, tumor, abuse
Bad things happen around the physis

- Important for pediatric cases
 - infection, tumor, abuse
 - common location, hard to see

peds

adults
Bone Scintigraphic Patterns

- **Positive Osseous Foci**
 - monostotic
 - polyostotic
 - diffuse

- **Negative Osseous Foci**
 - absent uptake
 - decreased uptake

- **Non-osseous (soft tissue) Uptake**
 - Includes kidneys
Bone Scintigraphic Patterns

• Be as specific as you can
 – location, size, intensity
 – precise location: medullary, cortical/periosteal
 – axial or appendicular
 – focal or linear
 – exophytic / expansile
Monostotic increased uptake

- Common
 - Trauma: fracture, stress fracture, shin splints
 - Tumor: primary or solitary metastasis
 - Infection (3 phase helpful)
 - BIG 3!!
 - Arthridites: joint centered
Monostotic Increased Uptake

• Less Common
 – Benign solitary bone lesion: bone island, exostosis, osteoid osteoma, fibrous dysplasia, etc
 – Pagets: usually multiple
 – Infarct: subacute to chronic
 – Meningioma: can commonly simulate a solitary skull lesion
Bone scan = whole body survey
Polyostotic Increased Uptake

• Common:
 – Metastasis
 – Pagets
 – Arthridites: joint centered, exophytic
 – polytrauma: non-accidental trauma, underlying metabolic bone process (e.g. rickets / osteomalacia with insufficiency fx, OI, etc.)
Polyostotic Uptake

• Less common:
 – osteomyelitis: especially pediatrics
 – multiple infarcts: think sickle cell
 – Bony dysplasias / syndromes:
 • polyostotic fibrous dysplasia, Olliers, osteopetrosis, multiple hereditary exostoses, Englemanns, neurofibromatosis, etc.
Bone metastatic appearance

• Location, location, location
 – Axial
 – Medullary
 – Not joint centered (not both sides)

• DDx: Metastases, fractures (ribs), DJD (spine), Pagets
Common trouble spots: ribs and spine

- Rib: met vs fracture
- Spine: met vs DJD
Rib lesion

• Rib fracture
 – focal / perpendicular
 – can be extreme rib end (a joint)
 – several in a row

• Rib metastasis
 – parallel to the rib (“longer than tall”, may not be “full rib thickness” if tiny)
 – not extreme rib end
 – not several in a row
Spine lesions

- **Spine DJD**
 - Exophytic
 - Facets (joint centered)
 - Loss of height / gain of width (compression fx) or linear endplate
 - Lumbar predominates

- **Spine metastasis**
 - Within the bone (especially pedicle)
 - Not joint or disk centered

Slides are not to be reproduced without permission of author.
Cortical bone metastases

- “True” bone metastases
- Not bound by red marrow (can be distal)
Pagets—the great mimic
Metastatic appearance

• Location, location, location
 – Red marrow
 – Central—axial and proximal appendicular
 – Medullary
 – Not joint centered (not both sides)
 – Ribs and spine DDx
 – Never forget Pagets
Diffuse uptake - superscan

- Increased ratio of bone to S.T. (incl kidney) uptake
- Axial >> Appendicular ("Metastatic superscan")
 - Prostate, breast
 - You know why!—red marrow
- Axial = Appendicular ("Metabolic superscan")
 - ROD with hyperparathyroidism, osteomalacia, hypervitaminosis D, myelofibrosis
- Pagets
Diminished uptake

- Aggressive metastases
 - renal and thyroid
- Multiple myeloma
 - typically normal, not decreased
 - will likely detect some lesions in a patient
- Bone infarction / AVN
 - decreased early
 - often increased later
Extraosseous (soft tissue) uptake

- Neoplasm: primary or metastatic
 - particularly mucinous, ossifying, or necrotic
 - lung (1o or 2o), hepatic (colon mets), breast, melanoma, neuroblastoma, renal, meningioma

- Necrosis
 - microscopic release of calcium
 - soft tissue necrosis, ischemic bowel, heart, brain, post RT
Extraosseous (soft tissue) uptake

- Myositis ossificans
 - activity decreases with maturity
- Calcified cartilage and vessels
- Hypercalcemia
 - gastric, renal, and lung uptake
- Free Tc
 - gastric, thyroid, salivary glands
Extraosseous (soft tissue) uptake

• Breasts
 – can be normal if symmetric

• Placenta
 – contains calcifications
 – will not visualize fetal skeleton: tracer does not cross placenta

• Renal

Slides are not to be reproduced without permission of author.
Radiation effect
Special considerations

- Reflex sympathetic dystrophy (RSD)
- Pediatric cases: abuse, neuroblastoma mets
- Flare phenomenon
- Hypertrophic osteoarthropathy
- Sacral insufficiency fracture
- Sickle Cell Disease
- SPECT
- Osteomyelitis
Speaking of osteomyelitis…

- Bone scan good if bone otherwise normal
- If not, decreased specificity, e.g.
 - Painful prosthesis (infx vs loosenig):
 - WBC/SC discongruency
 - Diabetic foot (infx vs Charcot):
 - WBC/bone scan congruency
Diabetic foot: WBC and bone scan (no red marrow)
SPECT

• Increase sensitivity

• Increase specificity

• Best for T and L spine
Summary

• Tracer delivery alone can markedly alter scan
 – Hyperemia
 – Arterial injection

• Bone = marrow + cortex

• Metastases
 – go to central and medullary skeleton (red marrow)
 – ribs: mets (segmental) vs fracture (focal or rib end)
 – spine: mets (intraosseous esp. pedicle) vs. DJD (exophytic / facets)
Summary

• Don’t forget Pagets!
• Pediatrics: stare at the growth plates for symmetry
Summary

• Osteomyelitis:
 – Bone scan if underlying bone is normal
 – WBC / SC discongruency for joint prosthesis
 – WBC / bone scan congruency for diabetic foot

• SPECT increases sensitivity and specificity