Radiation Protection Recommendations
ICRP Publication 103

K. F. Eckerman
Oak Ridge National Laboratory

Society of Nuclear Medicine
June 15, 2009

Slides are not to be reproduced without permission of author.
International Commission on Radiological Protection: ICRP

- Established by the International Congresses of Radiology in 1928
 - Formed as International X-Ray and Radium Protection Committee to address protection in medical radiology
 - Post WW II (1950) expanded to all aspects of radiation protection and given present name
 - International Commission on Radiation Measurements and Units (ICRU), formed in 1928, is a sister commission

- Issues recommendations on the principles of radiation protection
 - Form the basis for more detailed regulations and guidance issued by national authorities
 - Recommendations and advice of ICRP are published on a regular basis, and made available as the Annals of the ICRP
 - Recommendation and advice published in Annals of the ICRP (Elsevier Science)

Slides are not to be reproduced without permission of author.
Structure of the ICRP

• Main Commission (12 members and a chairman)
 – Committee 1. Radiation Effects
 – Committee 2. Doses from Radiation Exposures
 – Committee 3. Protection in Medicine
 – Committee 4. Application of ICRP Recommendations
 – Committee 5. Protection of the Environment

• Membership
 – Committee members (15 – 20) appointed by Main Commission
 – Members serve as individuals, not representatives of their country
 – Committee work carried out in Task Groups and Working Parties

• Commission is a registered charity in UK
ICRP Recommendations

• Radiation Protection Recommendations
 – Objective: provide appropriate standard of protection without unduly limiting beneficial practices that giving rise to radiation exposure
 – 1959 ICRP Publication 1
 – 1977 ICRP Publication 26
 – 1991 ICRP Publication 60
 – 2007 ICRP Publication 103

• US regulations based on Publication 26 or earlier
Radiation Protection Guidance

• Scope of Guidance
 – Prospective Applications
 • Provide scientific basis for regulatory system
 • Stochastic health effects prime driver
 • Establish good-practice guidelines (planning)
 – Retrospective Applications
 • Evaluation of actual exposures
 • Unplanned exposures or radionuclide intakes
 • Stochastic and deterministic health effects of concern
 – Exposure categories
 • Occupational Exposure
 • Public exposure
 • Medical exposure (dose limits not applicable to patients)
Biological Considerations

• Adverse Health effects
 – Deterministic effects: Effect occurs at doses in excess of a threshold
 – Stochastic effects: cancer and heritable effects; probability of occurrence a function of dose
 • LNT assumption (linear no threshold model)

• Nominal risk coefficients

<table>
<thead>
<tr>
<th>Exposed population</th>
<th>Cancer</th>
<th>Heritable effects</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present(^1)</td>
<td>Publ. 60</td>
<td>Present(^1)</td>
</tr>
<tr>
<td>Whole</td>
<td>5.5</td>
<td>6.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>4.1</td>
<td>4.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(^1\) Values from Annex A.

Table 1. Detriment-adjusted nominal risk coefficients (10\(^{-2}\) Sv\(^{-1}\)) for stochastic effects after exposure to radiation at low dose rate.

Slides are not to be reproduced without permission of author.
ICRP 103 Dose Limits

• Three principles of radiation protection:
 – justification, limitation, optimization

• Recommended annual dose limits:
 – Effective dose: 20 mSv (2 rem) over 5-years, no year in excess of 50 mSv (5 rem)
 – Tissue equivalent dose
 • Lens of eye: 150 mSv (15 rem)
 • Skin and hands/feet: 500 mSv (50 rem)
 – Declared pregnant woman (fetus): 1 mSv (0.1 rem)

Dose limits unchanged from ICRP 60
Evolution not Revolution

In the 2007 ICRP recommendations some things remain because they work explained because guidance needed added because of a void differ because knowledge evolved

“It may not be necessary to change regulations in those countries that have adopted Publication 60.” L-E Holm 2005.

However the US has not updated its regulations beyond the 1975 ICRP recommendations of ICRP Publication 26.
Dosimetric Quantities

- **Absorbed Dose** \((D)\). Physical quantity imparted energy per unit mass \((1 \text{ Gy} = 1 \text{ J/kg})\).

- **Equivalent Dose** \((H_T)\). Protection quantity, product of the absorbed dose \((D_{R,T})\) due to radiation \(R\) in tissue \(T\) and radiation weighting factor \((w_R)\). That is, \(H_T = \sum D_{R,T} w_R\).

- **Effective Dose** \((E)\). Protection quantity, sum of the products of equivalent dose \((H_T)\) and tissue weighting factor \((w_T)\). That is, \(E = \sum H_T w_T\).
Radiation Weighting Factor

ICRP Publication 103

Table 2. Recommended radiation weighting factors.

<table>
<thead>
<tr>
<th>Radiation type</th>
<th>Radiation weighting factor, w_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photons</td>
<td>1</td>
</tr>
<tr>
<td>Electrons and muons</td>
<td>1</td>
</tr>
<tr>
<td>Protons and charged pions</td>
<td>2</td>
</tr>
<tr>
<td>Alpha particles, fission fragments, heavy ions</td>
<td>20</td>
</tr>
<tr>
<td>Neutrons, a continuous function of neutron energy</td>
<td>(see Fig. 1 and Eq. 4.3)</td>
</tr>
</tbody>
</table>

All values relate to the radiation incident on the body or, for internal radiation sources, emitted from the incorporated radionuclide(s).

$$w_R = \begin{cases}
2.5 + 18.2e^{-\frac{\ln (E_n)^2}{6}}, & E_n < 1 \text{ MeV} \\
5.0 + 17.0e^{-\frac{\ln (2E_n)^2}{6}}, & 1 \text{ MeV} \leq E_n \leq 50 \text{ MeV} \\
2.5 + 3.25e^{-\frac{\ln (0.04E_n)^2}{6}}, & E_n > 50 \text{ MeV}
\end{cases}$$

$$H_T = \sum_R w_R D_{T,R}$$

Slides are not to be reproduced without permission of author.
Tissue Weighting Factors, w_T

ICRP Publication 103

Table 3. Recommended tissue weighting factors.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>w_T</th>
<th>$\sum w_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone-marrow (red), Colon, Lung, Stomach, Breast, Remainder tissues*</td>
<td>0.12</td>
<td>0.72</td>
</tr>
<tr>
<td>Gonads</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Bladder, Oesophagus, Liver, Thyroid</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>Bone surface, Brain, Salivary glands, Skin</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

* Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate (♂), Small intestine, Spleen, Thymus, Uterus/cervix (♀).

Slides are not to be reproduced without permission of author.
Dosimetric Quantities

- ICRP Protection Quantities
 - Effective dose
 - Equivalent dose in tissues
 - Non measurable quantities

- ICRU Operational Quantities
 - Measurable quantities of external radiation fields that adequately represent the protection quantities
 - Personal dose equivalent $Hp(10)$
 - Ambient dose equivalent $H*(10)$
Calculation of Effective Dose

Radionuclide Intake &
External Exposure

Male phantom
Absorbed doses, D^M_T

Equivalent
doses, H^M_T

Sex-averaged
equivalent doses, H_T

Female phantom
Absorbed doses, D^F_T

Equivalent
doses, H^F_T

Effective dose, E

$$E = \sum T w_T \left[\frac{H^M_T + H^F_T}{2} \right]$$

Male

Female

Reference Male

Reference Female

Reference Person

Slides are not to be reproduced without permission of author.
Committee 2 Ongoing Tasks

- Update dosimetric models and data
 - Publication 107 updates nuclear decay data
 - Publication 108 (in press) on Reference Male/Female Phantoms
 - Specific absorbed fractions calculations
 - Respiratory tract model updated (Publication 66 updates)
 - Revision of Publication 74 on external radiation
 - Update/expansion of information on systemic biokinetics

- Task Groups
 - Task Group on Dose Calculations (DOCAL)
 - Task Group on Internal Dosimetry (INDOS)

- Working Parties
 - Alpha epidemiology (w C1)
 - Publication 74, revised (joint w ICRU)
 - Space Radiation (ICRP report)
 - Use of Effective Dose (C2, C3, C4)
Possible Issues In US Adoption

• Change in occupational annual dose limit
 – Impact of change from 50 to 20 mSv

• Gender considerations
 – Is female worker adequately protected?

• ICRP’s schedule of supportive documents
 – 2011 Occupational Intakes of Radionuclides, Part 1
 – 2012 Public Exposures to Radionuclides
 – 2014 Occupational Intakes of Radionuclides, Part 2/3

• Need coordinated action of Federal agencies

Slides are not to be reproduced without permission of author.