Clinical Molecular Imaging of Infection/Inflammation

SNM 2009, CME Session

Steve Y. Cho, MD
Division of Nuclear Medicine/PET
Russell H. Morgan Department of Radiology and Radiological Science
Johns Hopkins University School of Medicine

Slides are not to be reproduced without permission of author.
Talk Outline

- Introduction
- Anatomic Imaging
- Functional Imaging
 - Review of Current NM Techniques
 - Role of SPECT/CT
 - Emerging Role and Indications for FDG PET/CT
 - Introduce Other Functional Imaging Agents
- Brief Evaluation of optimal modality for Specific Indications to date

Slides are not to be reproduced without permission of author.
 Role of Imaging in Management of Infections

- **Infection Dx - Clinical signs and symptoms**
 - Ex. Fever, pain, swelling, general malaise and abnormal laboratory results

- **Imaging tests – used to localize or confirm the presence of suspected infection**
 - Anatomic/Morphologic Imaging
 - Radiographs, CT, MRI, Ultrasound
 - Functional Imaging
 - Nuclear Medicine, PET

Slides are not to be reproduced without permission of author.
“4+1” Cardinal Signs of Inflammation
Signs of Inflammation/Infection

- “4+1” cardinal signs of inflammation
 - Celsus (30BC – 38 AD) and Virchow 1870

- Modern Imaging “detects and localizes” Host Inflammatory Response to Infection
 - Rubor (redness – hyperemia)
 - Calor (increased heat – hyperemia)
 - Tumor (swelling – edema, vascular permeability)
 - Dolor (pain)
 - Functio laesa (loss of function)

Slides are not to be reproduced without permission of author.
Morphologic/Anatomic Imaging
Edema of acute inflammatory response
 - Example:
 - lung edema – pneumonia
 - replacement of low-density marrow fat with inflammatory edema in acute osteomyelitis

Alteration of anatomy in soft tissue infection
 - swelling and blurring of fat planes from inflammatory edema

Hyperemia and capillary leakage in abscess wall
 - IV contrast enhancement

Palestro CJ et al. Cellular Microbiology 2007

Slides are not to be reproduced without permission of author.
CT – Pyogenic Microabscesses

Arterial phase contrast-enhanced CT scan
- multiple small hypoattenuating nodules representing pyogenic microabscesses
- faint peripheral enhancement (arrow)
- perilesional edema (arrowhead).

Mortele, K. J. et al. Radiographics 2004;24:937-955
Slides are not to be reproduced without permission of author.
MRI

- Anatomical imaging test of choice for diagnosing osteomyelitis
 - Signal intensity of the marrow
 - decreases on T1-weighted sequences
 - increases on T2-weighted sequences
 - direct consequence of the free water content (edema) of the inflammatory exudate.
 - These changes can be detected as early as 1–2 days after the onset of infection

- Intravenous gadolinium-containing contrast agents
 - enhancement of any inflamed area
 - due to hyperemia and capillary leakage
 - the enhancement is detected by using T1-weighted images
 - Example:
 - Not required in routine osteomyelitis
 - Useful for soft tissue abscesses and synovial thickening from synovial fluid
 - cellulitis and myositis enhances with contrast vs. 3rd spaced fluid).

Palestro CJ et al. Cellular Microbiology 2007
Slides are not to be reproduced without permission of author.
MRI - Osteomyelitis

Plain Radiograph Axial T1-weighted Axial T2-weighted

Osteomyelitis of 5th proximal phalange

Marcus CD et al. Radiographics 1996
Slides are not to be reproduced without permission of author.
Ultrasonography

- **Myositis**
 - heterogeneous hypoechoic ‘pock-marking’ of the normal pennate appearance of muscle

- **Abscess**
 - focal collection which is usually hypoechoic but which may have heterogeneous internal echoes due to debris.

- **Suspected septic joint - excellent imaging modality**
 - demonstrates abnormalities sooner than radiography

- **Not well suited for diagnosing osteomyelitis.**
 - acute osteomyelitis can only be diagnosed when a subperiosteal abscess is identified

- **Power Doppler Sonography** can be used to detect hyperemia

Palestro CJ et al. Cellular Microbiology 2007

Slides are not to be reproduced without permission of author.
Functional Imaging
Functional Imaging

- Imaging utilizes hyperemia or inflammatory infiltrates at sites of infection
- Overlap can exist with sterile inflammatory processes
 - Challenge of differentiating sterile inflammation vs. septic inflammation

Slides are not to be reproduced without permission of author.
Nuclear Medicine Techniques

Approved Radiopharmaceuticals

- 67Ga-citrate
- 111In-Oxine to label leukocytes in vitro
- 99mTc-HMPAO (Ceretec) to label leukocytes in vitro
- 99mTc-anti-NCA-90 Fab’ (LeukoScan) anti-granulocyte antibody
- 99mTc-anti-SSEA-1 IgM (LeuTech) to label leukocytes in vivo
- 99mTc-ciprofloxacin (Infecton)
- 18F-FDG

Investigational Radiopharmaceuticals

- 111In-DTPA-human IgG (HIG)
- 99mTc-HYNIC-IgG (HIG)
- 99mTc-anti-NCA-95 IgG (BW 250/183)
- 111In-F(ab)$_2$-anti-E-selectin antibody
- 99mTc-Interleukin-8 (IL-8)
- 99mTc-labeled chemotactic peptides
- 99mTc-labeled nanocolloids
- 18F-Fluorodeoxyglucose (FDG)
- 18F-FDG-Leukocytes (labeled in vitro)
Mechanisms of Radiopharmaceutical Localization

- Vascular permeability and Hyperemia
- Leukocyte Migration to site of infection
- Metabolic Trapping in Leukocyte at infection site
General Nuclear Medicine – Infection Imaging
67Ga-Citrate - Mechanism

- 67Ga-transferrin complex is highly stable at normal pH
- 67Ga dissociates at low pH environment of anaerobic metabolism
- Dependent on leaky blood vessels to enter extracellular space
- At low pH free 67Ga binds to other iron-binding molecules intracellularly at low pH (lactoferrin, siderophores)

Goldsmith SJ and Vallabhajosula S. Sem NM 2009

Slides are not to be reproduced without permission of author.
Clinical Indications:

- High Sensitivity for Acute and Chronic Infection
 - Previous gold-standard
 - 18F-FDG PET is comparable and replacing these indications
- Non-infectious Inflammation
- Not dependent on immunocompetent patient

Limitations:

- Low specificity due to physiologic bowel excretion
- Uptake also seen in malignancy and bone healing
- Delayed imaging up to 3 days for improved signal/background

Current Clinical Use:

- vertebral osteomyelitis
 - 67Ga imaging appears to be more sensitive than labeled leukocytes, probably related to the chronic nature of the infection.

Slides are not to be reproduced without permission of author.
The uptake of 99mTc-MDP is related to blood flow and to the rate of new bone formation.

Osteomyelitis
- invasion of the bone by microorganisms, as well as accumulation of leukocytes and secretion of powerful cytokines and chemokines
- results in an inflammatory reaction with destruction of the involved bone with osteoblastic formation

Hyperperfusion, hyperemia and accelerated new bone formation are not unique to osteomyelitis,
- 3 phase bone scintigraphy, though sensitive, is not specific for osseous infection.
111In and 99mTc-labeled Leukocytes

Mechanism

- Developed in the 1970’s, first introduced by McAfee and Thakur.

- In clinical studies, a mixed leukocyte population is isolated and labeled in vitro with 111In-oxine or 99mTc-HMPAO.
 - Normal differential of circulating leukocytes
 - 59% neutrophils, 34% lymphocytes, 2% monocytes

- Principle mechanism of uptake at the site of infection is
 - Cellular migration
 - Target specific localization.
Chemokine Regulation of Leukocyte Movement

- Chemokines (chemotactic cytokines) are secreted at sites of inflammation and infection.
- Chemokine concentration gradient surrounds the inflammatory stimulus
 - Also on the surface of the overlying endothelium.
- Leukocytes rolling on the endothelium adhere and extravasate into the extravascular environment.

Luster AD. NEJM 1998

Slides are not to be reproduced without permission of author.
Complex Network of Chemokines in Inflammation

The Scientist 2000

Slides are not to be reproduced without permission of author.
Clinical Indications:
- FUO
- Inflammatory bowel disease
- Osteomyelitis,
- Follow-up of patients with vascular or orthopedic prostheses

Leukocyte imaging provides high sensitivity for both acute infection (90%) and chronic infection (86%).

\(^{111}\)In-leukocytes are more stable in vivo and are better for infection imaging
- Lower resolution due to \(^{111}\)In label
- Higher radiation dose to patient
- Radiation exposure is an issue in pediatric patients

\(^{99m}\)Tc-leukocytes may provide early diagnosis (2-4 hours) but physiological \(^{99m}\)Tc activity in the abdominal area may be seen and results in false positive images.
Specific Indications for Radiolabeled Leukocyte Imaging

- **Diabetic foot**
 - Labeled leukocyte imaging is the radionuclide procedure of choice for evaluating diabetic pedal osteomyelitis.
 - Sensitivity 72% and 100%
 - Specificity 67% and 98%

- **Prosthesis Infection**
 - 99mTc-MDP – Sen 100% but a very low Spec 30%
 - Radiolabeled Leukocyte – improves Spec to 86%
Utility of SPECT/CT in Infection/Inflammation Imaging

- Incremental Value of SPECT/CT in musculoskeletal infections
- 99mTc-MDP Bone Scintigraphy
- 99mTc-HMPAO–labeled white cell scintigraphy – planar vs. SPECT/CT
 - SPECT/CT provided an accurate anatomic localization of all positive foci.
 - With regard to the final diagnosis, SPECT/CT added a significant clinical contribution in 10 of 28 patients (35.7%).

- Filippi L and Schillaci O. JNM 2006
SPECT/CT with 67Ga or 111In-WBC scintigraphy

- SPECT/CT provides anatomical localization of functional imaging
- SPECT/CT made an incremental contribution to GS and WBC in 48% of patients with suspected infections, by improving
 - Localization
 - Improved Diagnosis
 - Definition of extent of disease
- Bar-Shalom R et al. JNM 2006.
Hx:
- SPECT/CT for suspected bone infection
 - 1 mon post spinal surgery

Imaging:
- 67Ga uptake in paravertebral soft tissue abscess.
- Negative for osteomyelitis; confirmed on 1 month followup CT.

Bar-Shalom R et al. JNM 2006

Contribution of SPECT/CT to Diagnosis and Localization of Infection: Patient-Based Analysis

<table>
<thead>
<tr>
<th>Scintigraphy</th>
<th>Clinical indication</th>
<th>Total no. patients</th>
<th>Contributory SPECT/CT no. patients</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS</td>
<td>Osteomyelitis</td>
<td>21</td>
<td>10 (48)</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td>Soft-tissue infection</td>
<td>13</td>
<td>3 (23)</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td>FUO</td>
<td>13</td>
<td>4 (31)</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>47</td>
<td>17 (36)</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>Vascular graft infection</td>
<td>24</td>
<td>16 (67)</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td>Osteomyelitis</td>
<td>11</td>
<td>0 (55)</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>22 (63)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>82</td>
<td>39 (48)</td>
<td><0.05†</td>
</tr>
</tbody>
</table>

*Comparison between different clinical indications for same scintigraphic method.
†Comparison between GS and WBC.
NC = nonsignificant.
Numbers in parentheses are percentage of total number of patients with this indication.

Slides are not to be reproduced without permission of author.
20 year-old male with history of JRA, common variable immunodeficiency, asplenia, and inflammatory bowel disease.
- Persistent left ankle pain.
- MRI of bilateral ankles 6 days ago showed neuropathic osteoarthropathy changes but was indeterminate for osteomyelitis.

Planar 111In-Leukocyte scan with 99mTc – SC dual isotope imaging of ankles.

- Colon activity - colitis
- Uptake in the bilateral ankles
 - matched
 - neuropathic osteoarthropathy
- Soft tissue vs. osteomyelitis of right tibia?
SPECT/CT

111In-Leukocyte

99mTc-SC

Slides are not to be reproduced without permission of author.
\(^{18}\text{F-FDG PET/CT} – \text{Infection Imaging}\)
FDG in Inflammation

Activated Leukocyte

Adapted from: Kapoor, V. et al. Radiographics 2004;24:523-543

Slides are not to be reproduced without permission of author.
Molecular Basis of FDG Uptake in Infection and Inflammation

- *Activated* inflammatory cells metabolized glucose as energy source
- Neutrophils, Macrophages, and Lymphocytes
 - a postmigratory event of activated cells and not dependent on an ongoing chemotactic stimulus
- Mainly GLUT-1 and GLUT-3
 - intracellular GLUT-1 pool can be translocated to the cell membrane
 - (> 24 h) increase in 18F-FDG uptake by gene dependent de novo synthesis of GLUT-1
 - neutrophils and macrophages - overproduction of the hexokinase II enzyme during the respiratory burst
- Meller J et al. JNM 2007
FDG PET
Inflammation/Infection – Pros/Cons

- **Advantage**
 - Higher Resolution
 - Quantitative
 - Logistically easy, now widely available
 - Uptake in both chronic and acute inflammation
 - High sensitivity (but suffers from low specificity)
 - High Negative Predictive Value
 - PET/CT offers anatomical localization

- **Disadvantage**
 - FDG may diffuse out of cells with increased glucose-6-phosphatase
 - Nonspecific for tumor vs. inflammation vs. infection
 - No applicable to patients with active malignancy

- Currently not reimbursed by CMS
FDG PET Inflammation/Infection – Clinical Indications

- FUO
- Osteomyelitis
- Sarcoidosis
- Vasculitis
- HIV
- Lung Inflammation
- Atherosclerosis (carotid and coronary)
- *In vitro* 18F-FDG-labelled leukocytes
FDG PET –
Chronic Osteomyelitis

FDG PET most accurate; Leukocyte scintigraphy similar accuracy axially

Termaat MF et al. The Journal of Bone and Joint Surgery 2005
FDG PET – Chronic Osteomyelitis

- Highly Sensitive (96%: 88-99% [95%CI])
- Greater Specificity versus other modalities:
 (91%: 81-95% [81-95%])
 - 67Ga-Citrate
 - Radiolabeled Leukocyte scintigraphy
 - Bone Scintigraphy
 - MRI

Termaat MF et al. The Journal of Bone and Joint Surgery 2005
FDG PET/CT –
Chronic Osteomyelitis Case

Back pain s/p spinal hardware for unstable L2 fracture
Osteomyelitis and adjacent soft tissue infection

Hartmann A et al. EJNMMI 2007
Slides are not to be reproduced without permission of author.
FDG PET –
Diabetic Foot Infection

- Limited number of studies to date
- Differential Diagnosis:
 - Osteomyelitis vs.
 - Acute Neuropathic Osteoarthropathy (Charcot Neuroarthropathy) vs.
 - Cellulitis
- Useful complement to MRI for detection of neuropathic joints
- Potentially difficult to differentiate cellulitis from osteomyelitis due to tight anatomical space
- Blood Glucose may complicate studies
 - Reportedly quality for infection imaging was not affected by serum glucose levels

Slides are not to be reproduced without permission of author.
FDG PET – Diabetic Foot Infection

- Mean SUVmax uptake pattern
- More focal and intense uptake in osteomyelitis
- FDG PET
 - Sen 100%, Spec 93.8%
- MRI
 - Sen 76.9%, Spec 75%
(Basu S et al. Nuc Med Comm 2007)

<table>
<thead>
<tr>
<th></th>
<th>Sen</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDG-PET</td>
<td>78%</td>
<td>93%</td>
<td>78%</td>
<td>93%</td>
</tr>
<tr>
<td>MRI</td>
<td>95%</td>
<td>78%</td>
<td>56%</td>
<td>98%</td>
</tr>
<tr>
<td>Plain Films X-ray</td>
<td>57%</td>
<td>85%</td>
<td>57%</td>
<td>85%</td>
</tr>
</tbody>
</table>

- Preliminary Data of a prospective study (Nawaz A et al. JNM 49:123P, 2008 (suppl 1)
- FDG PET vs. MRI vs. plain film radiographs for detection of osteomyelitis
- FDG PET has high specificity – useful compliment to MRI scan

Slides are not to be reproduced without permission of author.
FDG PET/CT – Diabetic Foot Infection Case

Osteomyelitis at head of 4th metatarsal bone

Cellulitis and negative for osteomyelitis

Slides are not to be reproduced without permission of author.
FDG PET – Prosthesis Infection

- Differentiate mechanical loosening vs. superimposed bacterial infection
- Incidence of infection with Hip arthroplasty:
 - 1-4% initially
 - 25% after revision
- High negative predictive value
FDG PET – Prosthesis Infection – Literature Review

- Differentiation of infection vs. loosening
- 5 prospective studies with total of 209 pts
 - 2001 - 2005
 - 223 Hips and 36 Knee prostheses
- Sensitivity = 82.8% (33 – 94%)
 - the result is influenced by one study with outlier sensitivity of 33%
 - Exclusion of outlier, Sensitivity = 92%
- Specificity = 92% (77.8 – 96.6%)
 (Zoccali C et al. Int Ortho (SICOT) 2009)
FDG PET –
Prosthesis Infection –
2nd Literature Review and MetaAnalysis

• ROC plot with pooled sensitivity and specificity
• 11 studies collected (to 27 May 2008)
• Sensitivity 82.1% (68 – 90.8%)
• Specificity 86.6% (79.7 – 91.4%)
Presently, combined leukocyte/marrow imaging, with approximately 90% accuracy, is the radionuclide imaging procedure of choice for diagnosing prosthetic joint infection.

Comparison to gold standard leukocyte imaging

- Varying data – no definite conclusion
- Pill et al. J Arthroplasty 2006(Suppl 2)
 - Comparable specificity (93% FDG, 95.1% LS)
 - FDG-PET had high sensitivity (95.2% vs 50%)
 - Both with 100% Sensitivity
 - Poor FDG-PET specificity (73% vs 93%)
- More Studies Needed
Femur head region uptake – nonspecific
Left hip prosthesis shaft linear uptake - considered strongly suggestive of periprosthetic infection.
The periprosthetic infection was confirmed by subsequent surgery.

Femur head region uptake – nonspecific
Left hip prosthesis shaft linear uptake - considered strongly suggestive of periprosthetic infection.
The periprosthetic infection was confirmed by subsequent surgery.

Zhuang H et al. RCNA 2007
Limited number of prospective studies indicate that FDG PET has the potential to play a central role as a second-line procedure in the management of patients with FUO.

In these studies, the PET scan contributed to the final diagnosis in 25% - 69% of the patients.

Miller J et al. JNM 2006
Types of FDG uptake in FUO

- **Infectious diseases**
 - focal abdominal, thoracic, or soft-tissue infection
 - chronic osteomyelitis
 - Negative findings on 18F-FDG PET essentially rule out orthopedic prosthetic infections.

- **Noninfectious inflammatory diseases**
 - large-vessel vasculitis
 - Inflammatory bowel disease
 - sarcoidosis
 - painless subacute thyroiditis.

- **Oncology**
 - Hodgkin’s disease
 - aggressive non-Hodgkin’s lymphoma
 - colorectal cancer
 - sarcoma.
FDG PET – FUO

- Identified the underlying cause of the fever in 46% of patients.
- Contributed to the diagnosis or exclusion of a focal pathologic etiology of the febrile state in 90% of patients.
- Uptake in 27 of 48 total patients.
 - In 22 of these 27 positive studies (81%), PET/CT identified the underlying disease
 - Infection in 9 patients
 - Inflammatory process in 10 patients
 - Malignancy in 3 patients
- FDG PET/CT has a high negative predictive value (100%) for assessment of FUO.
- Keidar Z et al. JNM 2008
A 78-y-old woman presented with 6 wk of fever, night sweats, and weight loss. Intense linear 18F-FDG uptake along walls of major vessels c/w arteritis:
• thoracic aorta
• Brachiocephalic and subclavian arteries

Giant cell arteritis was diagnosed on temporal artery biopsy.

41-y-old woman presented with 3 wk of fever. CT demonstrated small amounts of pleural, pericardial, and peritoneal fluids and 2-cm hypodense lesion in left pelvis adjacent to uterus.

Diagnosis of right ovarian abscess and left ovarian cyst was confirmed at surgery.

Slides are not to be reproduced without permission of author.
FDG PET – Vascular Graft

Among the various assessed parameters only focal FDG uptake and an irregular graft boundary were significant predictors of VPI.

<table>
<thead>
<tr>
<th>Focal FDG uptake</th>
<th>Graft boundary</th>
<th>n</th>
<th>Probability of VPI</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quantitative assessment (%)</td>
<td>Subjective assessment</td>
</tr>
<tr>
<td>Not present</td>
<td>Smooth</td>
<td>31</td>
<td>4.5</td>
<td>Very low</td>
</tr>
<tr>
<td>Inhomogeneous</td>
<td>Smooth</td>
<td>9</td>
<td>28.2</td>
<td>Ambiguous-low</td>
</tr>
<tr>
<td>Not present</td>
<td>Irregular</td>
<td>1</td>
<td>30.4</td>
<td>Ambiguous-low</td>
</tr>
<tr>
<td>Intense</td>
<td>Smooth</td>
<td>4</td>
<td>76.5</td>
<td>Ambiguous-high</td>
</tr>
<tr>
<td>Inhomogeneous</td>
<td>Irregular</td>
<td>0</td>
<td>78.3</td>
<td>Ambiguous-high</td>
</tr>
<tr>
<td>Intense</td>
<td>Irregular</td>
<td>42</td>
<td>96.8</td>
<td>Very high</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spacek M et al. EJNMMI 2009

Slides are not to be reproduced without permission of author.
Vascular Graft Case

True-positive findings.
There is a high focal FDG uptake and irregularity of the boundary of the distal portion of the left femorotibial bypass 6 months after grafting. (+)MRSA

True-negative finding.
Mild homogeneous FDG uptake without any focal accumulation in the course of the right iliofemoral bypass 23 months after grafting.
A further 18 months of clinical follow-up did not reveal any infection.
High FDG uptake was found in aortovascular grafts
- 10 of 12 grafts in the patients who underwent open surgery
- 1 of 4 grafts in patients who underwent endovascular aneurysm repair.

On the basis of biochemical and clinical data
- Only 1 of the 16 patients had a graft infection at the time of investigation.
 - *Infected* Graft SUVmax / BP SUVmean Ratio = 5.7
 - *Uninfected* ratio 1.3 to 3.7

Wassélius J et al JNM 2008
Another Vascular Graft Case

64 year old fever of unknown origin 5 yr after uneventful open surgery and postoperative recovery.
FDG accumulation close to bifurcation corresponding to soft-tissue mass seen on CT ventral to graft (arrowheads)
FDG PET – Infectious Indications

- **FUO**
 - High negative predictive value
 - Localize site of suspected infection or inflammation or malignancy
 - Low specificity

- **Joint Replacement – Loosening vs. infection**
 - Inflammation in both situations
 - Labeled leukocytes more accurate and imaging of choice currently
 - Ongoing studies

- **Chronic Osteomyelitis**
 - Accurate diagnosis
 - Likely will replace gallium for vertebral osteomyelitis

- **Diabetic Foot osteomyelitis**
 - Incomplete data to date
 - Useful complement to MRI

- **Vascular Graft Infection and Fistula**
 - Pattern and level of uptake is crucial to differentiate normal uptake versus infection
18F-FDG PET/CT – Inflammatory Conditions
FDG PET – Vasculitis

- Current imaging modalities show only anatomical changes in vessel lumen and cannot detect early stage inflammation when structural changes have not developed yet.

- FDG PET/CT
 - Large vessel vasculitis, GCS, TA
 - Sensitivity 77 – 92%
 - Specificity 89 - 100%
 - SUV does not seem to correlate with disease activity
 - BUT can be used to evaluate response to therapy

- Ben-Haim S et al. Sem NM 2009
Vasculitis Case

72-year-old-female patient with fever of unknown origin and a history of lymphoma - increasing inflammatory markers, clinically suspected recurrence

FDG PET:
- increased FDG uptake along the walls of the ascending and descending thoracic aorta
- the aortic arch
- the abdominal aorta and iliac arteries
- great vessels extending from the arch of the aorta into the subclavian and common carotid arteries bilaterally.

These findings are consistent with large vessel arteritis

Biopsy diagnosed Takayasu arteritis.

Slides are not to be reproduced without permission of author.
FDG PET – HIV

- Scharko AM et al. Lancet 2003
- HIV-1 progression was evident by distinct FDG lympoid anatomical
 - Head and neck during *acute disease*
 - Generalised peripheral lymph-node activation at *mid-stages*
 - Involvement of abdominal lymph nodes during *late disease*

Slides are not to be reproduced without permission of author.
Healthy HIV-positive patients with suppressed viral loads and HIV-negative individuals
- no or little FDG nodal accumulation or any other hypermetabolic areas

Viraemic individuals with early and advanced HIV disease
- increased FDG in the peripheral nodes
- indicates that FDG potentially identifies areas of HIV replication.

FDG biodistribution was similar between early and advanced disease.

Brust D et al. AIDS 2006
FDG PET – HIV on ART

- FDG PET in HIV patients on ART
- PET images revealed different patterns of FDG uptake.
 - All ART-treated patients with either suppressed (<50 copies/mL; Group A) or high viremia (group B)
 - showed a normal pattern of FDG uptake.
 - ART-naïve subjects with high viraemia (group C)
 - multiple foci of FDG avid lymph nodes
 - viremia below 100,000 copies/mL
 - upper torso mainly in the axillary nodes bilaterally
 - viremia higher than 100,000 copies/mL,
 - FDG uptake also observed in the inguinal lymph nodes.
FDG PET – HIV on ART

<table>
<thead>
<tr>
<th>GROUP</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Viremia (copies/ml)</td>
<td><50</td>
<td>8892</td>
<td>20243</td>
<td>122983</td>
</tr>
</tbody>
</table>
FUO - CMV(IgM+) Case

Slides are not to be reproduced without permission of author.
FDG PET – Sarcoidosis

- Considering only the 12 patients who underwent both scintigraphic examinations, overall sensitivity of:
 - 67Ga scintigraphy = 58%
 - FDG PET/CT = 79%

- After excluding all sites of skin involvement, sensitivity improved to:
 - 67Ga scintigraphy = 67%
 - FDG PET/CT = 86%

- Braun JJ et al. EJNMMI 2008
FDG PET – treatment monitoring in sarcoidosis

66-year-old woman with multisystemic biopsy-proven sarcoidosis at primary staging (a) and after corticosteroid treatment
Other Functional Imaging Agents
99mTc-Labeled AntiGranulocyte Abs

- **Advantage** – fast, logistically easier, better imaging resolution
- **99mTc-anti-NCA-90 Fab’ fragments**
 - (Sulesomab, LeukoScan; Immunomedics GmbH, Darmstadt, Germany)
 - Rapid localization of soft tissue and bone infections
 - Clinical Results have been variable
- **99mTc-labeled antistage specific embryonic antigen-1**
 - Known as 99mTc-fanolesomab (NeutroSpec™)
 - (anti-SSEA-1) monoclonal IgM class antibodies, known as LeuTech (Mallinckrodt, Hazelwood, MO)
 - Binds preferentially to CD-15 on activated neutrophils
 - 99mTc-fanolesomab approved for clinical use in the USA in 2004, accurately diagnosed appendicitis osteomyelitis, and vascular graft infection
 - In December 2005 it was withdrawn from the US market because of reports of serious and life-threatening cardiopulmonary events, including two fatalities, shortly after administration.
 - Future of this agent is uncertain
- **Radiolabelled interleukin-8 (IL-8), a chemokine that binds with high affinity to the CXC1 and CXC2 receptors present on neutrophils**
 - Significant localization in animal models of infection and clinical trial.
 - No significant side effects in 20 patients

Slides are not to be reproduced without permission of author.
99mTc-Labeled Interleukin 8 - Case

4 and 24 hour; liver abscess

4 hour; calcaneus osteomyelitis

Bleeker-Rovers CP et al. JNM 2007

Slides are not to be reproduced without permission of author.
Apoptosis Imaging

- 99mTc-Recombinant Human Annexin V Imaging
 - Differential Diagnosis of
 - Aseptic Loosening vs. Low-Grade Infection
 - Hip and Knee Prostheses
 - Only 1 false positive of 7 patients
 - Lorberboym M et al. JNM 2009

Example

MDP BS

Ant

Post

Annexin V

Slides are not to be reproduced without permission of author.
Direct Bacterial Infection Imaging

- 124I - FIAU –Bacterial Thymidine Kinase

Images show various infections:
- Septic Arthritis
- Osteomyelitis
- Cellulitis
- Necrotizing Septic Arthritis

Diaz LA et al. PLoS One 2007

Slides are not to be reproduced without permission of author.
Recommended References

- Seminars in Nuclear Medicine
 - 2 part series - The Role of Nuclear Medicine Techniques in the Evaluation of Infectious Disease
 (January and March 2009)
Thank You

Slides are not to be reproduced without permission of author.