PET IMAGING IN
NEUROBLASTOMA

HELEN R. NADEL MD FRCPC

Slides are not to be reproduced without permission of author
Neuroblastoma

• 3rd most common childhood malignancy
• 10% of all pediatric tumors
• 15% of cancer deaths in children age 1-4 years
Objectives

• Historical diagnostic evaluation
• Current practice
• PET evaluation
• Future
Neuroblastoma-MDP

- primary uptake 35-100%
- bony increased uptake
- symmetrical metaphyseal uptake
- photopenic lesions

Slides are not to be reproduced without permission of author
Symmetrical Metaphyseal Uptake

- neuroblastoma
- lymphoma
- leukemia

abnormal normal

Slides are not to be reproduced without permission of author
Neuroblastoma - Radiotracers

- TC-99m MDP
- MIBG
- Tc-99m (V)DMSA
- Octreotide
- Monoclonal antibody
Neuroblastoma-MIBG

- diagnosis
- staging
- metastatic work-up
- response assessment
- treatment

normal I-123 MIBG

Slides are not to be reproduced without permission of author
Neuroblastoma

- MIBG to assess extent of disease including primary tumor, and bone disease
- MDP bone scan if MIBG negative or unavailable
- x-ray positive lesions
- PET if MDP and MIBG are negative
Neuroblastoma

• staging must distinguish between stage IV and IV-s
• 5 year old boy who presents with leg pain
Dx- stage IV Neuroblastoma

I-123 MIBG
Stage IV-S Neuroblastoma
Slides are not to be reproduced without permission of author.
Neuroblastoma

- MIBG-marrow disease > cortical bony disease
- MDP-cortical > marrow disease
Neuroblastoma-MIBG screening

- MEN
- opsoclonus-myoclonus (OMS)
- Up to 50% have NB
- 1-3% NB present with OMS
- normal adrenal activity in 50% I-123

Slides are not to be reproduced without permission of author
Somatostatin-Receptor Imaging

- Somatostatin receptors present on neuroblastoma cells
- Indium-III label; octreoscan
- Normal biodistribution: liver, spleen, kidneys, gut
Radiolabeled Monoclonal Antibodies

- I-131 or I-123 radiolabel
- 3F8: murine IgG antibody specific for ganglioside G\textsubscript{D2}
- G\textsubscript{D2} is absent in normal tissues but present in high concentration in neuroblastomas

- tracer localization in both primary tumors and metastases
- highly sensitive
- highly specific
- potential targeted radiotherapeutic agent

Image courtesy of Dr. Sam Yeh
MDP

I-123 MIBG

Slides are not to be reproduced without permission of author
FALSE NEGATIVE MIBG

- Specificity MIBG > 96%
- ? Better outcome ? Worse outcome
- Complementary imaging
- I-131 vs I-123
- Ganglioneuroma vs neuroblastoma
- Cortical vs marrow disease

Slides are not to be reproduced without permission of author
PET - FDG

• uptake in variety of tumors
• uptake related to enhanced glycolytic metabolism of tumor cells as compared to normal cells
NEUROBLASTOMA-FDG

Images courtesy of Dr. Barry Shulkin

Slides are not to be reproduced without permission of author
Neuroblastoma and FDG

- Most concentrate FDG
- Rapid uptake within 20-30 minutes post injection
- Uptake higher pre treatment than post treatment
SUV in Pediatric Patients

- Adult dependence on body weight
- Pediatric body-surface based SUV more uniform than if calculated on body weight alone
- ~independent of body parameters and age
- Neuroblastoma SUV in study 25.9±15.4

Decline-corrected activity (kBq) / tissue volume (ml)

Injected FDG dose (kBq) / body surface area (m²)
Advantages:

- does not depend on Type 1 catecholamine uptake mechanism of MIBG
- useful in those 10% of neuroblastomas that are not MIBG avid
- liver lesions better visualized where obscured by MIBG
PET - FDG

Disadvantages:

- lower tumor to non-tumor uptake ratios when compared to MIBG
- less reliable than MIBG in those patients undergoing or post-chemotherapy
- normal uptake in kidneys, gut, thymus may confuse interpretation
- accumulation in normal bone marrow precludes assessment for disease
- poor vis cranial vault
- nonspecific uptake in inflammation
Neuroblastoma and FDG

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>T+</th>
<th>F-</th>
<th>T-</th>
<th>F+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanga</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Shulkin</td>
<td>17</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kushner* (Mult eval)</td>
<td>51</td>
<td>30</td>
<td>3</td>
<td>22</td>
<td>2</td>
</tr>
</tbody>
</table>

Sens 92% Spec 92%

Kushner, Clin Oncol 2001; 19: 3397-3405
Shulkin, Radiology. 1996; Jun; 199(3): 743-50

Slides are not to be reproduced without permission of author.
Ca++ in tumor

Images courtesy of Dr. B. Shulkin

Slides are not to be reproduced without permission of author.
Intense bone uptake

Images courtesy of Dr. B. Shulkin

Slides are not to be reproduced without permission of author
Tonsil uptake 27 mo old

Images courtesy of Dr. B. Shulkin

Slides are not to be reproduced without permission of author
Intense brown fat and tumor

Images courtesy of Dr. B. Shulkin

Slides are not to be reproduced without permission of author
PET in Neuroblastoma

- Memorial Sloan Kettering experience
- PET was = or superior to MIBG in soft tissue and extracranial structures
- Recommend PET and marrow aspiration for monitoring patients after resection of primary tumor

11-C-hydroxyephedrine (HED) in Neuroblastoma

- PET probe for visualization of sympathetic nervous system
- rapid uptake and high retention
- good visualization within 5 min of injection
- lesion distribution similar to MIBG
- high hepatic and renal uptake HED which declines rapidly
- limited comparison to FDG but uptake HED superior

Slides are not to be reproduced without permission of author
PET Radiotracers in Neuroblastoma

- 18-FDG
- C-11 hydroxyephedrine
- C-11 epinephrine
- C-11 5-hydroxytryptophan
- 18- F- (fluoroalkyl)benzylguanidines
- I-124 MIBG
MicroPet of Reporter Genes

Slides are not to be reproduced without permission of author
Biologic Poor
Prognostic Factors

- N-myc amplification
- DNA di or tetra ploidy
- 1p deletion short arm chromosome one
- Gain of 17q region
- high MRP expression
Objectives

• Historical diagnostic evaluation
• Current practice
• PET evaluation
• Future