FDG PET Imaging: Measuring Response to Therapy

Dominique Delbeke, MD, PhD
Vanderbilt University Medical Center

51st Meeting of the SNM, June 19-23, 2004, Philadelphia

Slides are not to be reproduced without permission of author
Limitations of conventional imaging:

- Residual mass due to fibrosis
- Therapy-related new findings
- Anatomical regression of tumor takes time

Role of PET

- Metabolic changes occur before anatomical changes and PET allow evaluation of metabolic changes and therefore of early response
- For example: FDG PET can characterize residual masses as metabolically active or not
PET and Tumor Response to Therapy

- **Metabolic characteristics:**
 - Cellular proliferation (high bg in BM and liver): e.g. FLT
 - Cellular oxygenation-hypoxia: e.g. FMISO, Cu-ATSM
 - Hypoxia increases resistance to XRT
 - Hypoxia leads to phenotypic heterogeneity
 - Hormone dependency
 - Drug binding-sensitivity
 - Receptor status: e.g. estrogen receptors for breast cancer
 - Gene expression/Gene therapy:
 - Cellular metabolism: e.g. FDG
 - Cell death

Slides are not to be reproduced without permission of author
Measuring Response to Therapy with PET

- Residual tumor at surgical site or post-surgical staging
- Response to radiation therapy
- Response to chemotherapy
 - Early
 - After completion
- Response to neo-adjuvant therapy
Monitoring Response to Therapy with FDG PET: Timing in Relation to Surgical Therapy

Surgery:
- ~ 2 months for surgical site
- Anytime for staging elsewhere.
Patients s/p gastrectomy for lymphoma 2 weeks prior

Diagnosis: FDG uptake in healing surgical incision

Slides are not to be reproduced without permission of author
Patient with esophageal cancer s/p surgery 2 months earlier with still inflamed scar
39-year-old with unresectable head and neck carcinoma, s/p recent tracheostomy

Diagnosis: Tracheostomy

Slides are not to be reproduced without permission of author
62 year-old male s/p resection of recurrent lymphoma of the small bowel 2 weeks earlier.

Diagnosis: post-operative changes
39-year-old male with a history of recurrent melanoma s/p lymphadenectomy of the right axilla

Diagnosis:
1) Post-operative changes
2) Internal mammary LN
Monitoring Response to Therapy with FDG PET: Timing in Relation to Radiation Therapy

- More than 6 months after completion of radiation:
 - FDG uptake indicates tumor recurrence
- Early after radiation (within 2 months…up to…..):
 - FDG uptake matching the radiation port due to inflammatory changes
- Recommendations:
 - Wait as long as possible after radiation before performing FDG PET
 - Comparison to baseline PET is helpful
 - Knowledge of radiation ports is helpful.
62-year-old female with RUL NSCLC s/p remote XRT to the primary and to the upper lumbar spine for a skeletal metastasis.

Diagnosis: Residual tumor at the primary site and additional bone metastases.
45-year-old man with SCC of the larynx 2 months after radiotherapy

Biopsy: Inflammatory changes and chondronecrosis

69-year-old female with carcinoma of the base of the tongue s/p chemo and radiation

Diagnosis: Recent radiation changes (2 weeks) matching the radiation port

Slides are not to be reproduced without permission of author
81-year-old male with large cell carcinoma treated with radiation therapy

Diagnosis: Radiation pneumonitis

65 year-old with lung cancer s/p XRT to mediastinum 1 week earlier

Radiation esophagitis

Curvilinear photopenia along diaphragm due to motion of diaphragm

Slides are not to be reproduced without permission of author
45-year-old man after completion of neo-adjuvant chemoradiation therapy for SCC of the right tonsil

Diagnosis: thrombophlebitis in right internal jugular vein

Monitoring Response to Therapy with FDG PET: Timing in Relation to Chemotherapy

Physiological uptake in response to therapy

- For 2-4 weeks: Bone marrow and spleen due to regenerating bone marrow (hyperplasia)
 - Worse if bone marrow stimulating factors have been administered with chemotherapy (e.g. G-CSF, neupogen)
- Possible transient cellular stunning
- Possible inflammatory response: metabolic flare

Recommendation:

- At least 2 weeks after last chemotherapy or just before next cycle
- 2-months after completion of therapy
14-year-old boy who just completed chemotherapy for lymphoma

Diagnosis: Reactive bone marrow hyperplasia

A 42-year-old female who underwent a left mastectomy for breast carcinoma followed by chemotherapy presented with rising tumor markers.

Diagnosis: Severe bone marrow uptake related to administration of G-CSF the day before.

Slides are not to be reproduced without permission of author.
Diagnosis: Thymic hyperplasia
15 year-old male with lymphoma

Pre-Therapy

After 2 cycles

After completion

6 months F/U

Slides are not to be reproduced without permission of author
16-year-old boy s/p completion of chemotherapy for NHL

Diagnosis: Thymic hyperplasia
FDG PET: Thymic Uptake

- 168 patients with retrosternal lesions attributable to thymus
 - Children with malignancies pretherapy: n = 15, mean age = 12
 - Increased FDG uptake in 73%
 - Children with malignancies after chemotherapy: n = 12, mean age = 10
 - Increased FDG uptake in 75%
 - Adults with lymphoma before therapy: n = 37, mean age = 43
 - No FDG uptake
 - Adults with lymphoma 1-4 months after chemotherapy: n = 104, mean age = 41
 - Increased FDG uptake in 5%, eldest was 25 year of age

Sources of False-positives Interpretations

◊ Physiologic FDG uptake
 ▪ GU tract
 ▪ GI tract
 ▪ Muscular system

◊ Inflammation
 ▪ Therapy-related
 ▪ Infection
 ▪ Trauma
 ▪ Granulomatous diseases
FDG PET(/CT) Imaging Reports

- Brief history including
 - Timing from therapy
 - Reason for referral
 - Relevant findings on physical examination

- Comparative studies available

- Blood glucose level at the time of FDG administration

- Documentation of drugs and radiopharmaceuticals

- Type of equipment and imaging protocol

- Findings on PET and correlative findings on CT

 - (Additional incidental findings on transmission CT)

- Diagnostic impression

Slides are not to be reproduced without permission of author
Image Interpretation and Analysis

Do We Need Quantification?

- Visual analysis
- Semi-quantitative analysis using ratio of activity in two ROI: Lesion/background or right/left
- Semi-quantitative analysis: Standard uptake value

\[
\text{Activity in ROI (microcuries/ml)}
\]
\[
\text{SUV} = \frac{\text{Dose (mCi)}}{\text{Weight (kg)}}
\]

- Absolute quantification using kinetic analysis and compartmental modeling

Slides are not to be reproduced without permission of author
Standard Uptake Value

- Affected by tumor size because of partial volume effects.
- Depend on:
 - Plasma glucose levels
 - Body weight
 - Body composition
 - Time of imaging after FDG administration
 - ROI size: SUV max versus SUV avg
 - Resolution capability of the scanner
- Requires measurements of absolute concentration of positron emitter (in microCi/cc) in region of interest.

Slides are not to be reproduced without permission of author
Quantitative PET: Absolute concentration

Depends on:
- Detector normalization and calibration
- Correction for artifacts related to the scanner:
 - Deadtime correction
 - Random correction
 - Scatter correction
- Image reconstruction
- Correction for artifacts related to the object or subject
 - Partial volume effects
 - Attenuation correction
Correction for Attenuation Artifacts

Methods:

- Calculated attenuation correction: e.g. Brain
- Measured attenuation correction using various transmission sources: best XR source

Quality of the images with AC: accuracy of registration of the emission and transmission scan.

Problems:

- Inaccurate repositioning of the patient between scans
- Motion of the patient and motion of internal organs
- Type of source and reconstruction
Standard Uptake Value

- Reproducibility of the SUV depends on:
 - Rigorous quality control of the PET system
 - Imaging protocol.

- For absolute measurement of metabolic rate
 - Analysis of dynamic data over tumor
 - Arterial input function is also needed:
 - Arterial sampling
 - Or dynamic scanning over the heart
 - Patlak analysis: simplify computation by assuming that FDG is trapped intracellularly
 - Not practical clinically
FDG PET to Monitor Therapy: Clinical Data

- Brain Tumors
- Lung cancer
- Head and neck
- Sarcoma
- Germ cell tumors
- Lymphoma
- Breast cancer
- Esophageal cancer
- Colorectal cancer
- Regional therapy to hepatic tumors

Slides are not to be reproduced without permission of author
Brain Tumors: FDG PET

Tumor Recurrence vs Radiation Necrosis

- Delayed radiation necrosis usually occurs 6 months after radiotherapy (5000 rads)
- CT and MRI changes mimic tumor recurrence

Diagnosis: High grade tumor recurrence

Patronas NJ et al. Radiol 1982;144:885
FDG PET for Brain Tumors
Monitoring Radiotherapy

- 14 patients with gliomas:
 - FDG PET at baseline and 2 weeks post-XRT
- Low MRglc at baseline correlates with longer survival
 - No correlation between MRglc post-XRT and survival: Hypothesis:
 - Apoptosis requires energy
 - Inflammatory infiltrate

FDG PET for Brain Tumors
Tumor Recurrence versus Radionecrosis after Stereotactic Surgery

✧ 47 patients: mean time between XRT and FDG PET ~ 6 months*
 - To predict tumor recurrence:
 ✧ Sensitivity FDG PET: 75%, improves to 86% with MRI co-registration
 ✧ Specificity FDG PET: 81%

✧ 19 cerebral tumors in 8 patients both primary and metastatic**:
 - Starting 4 H after stereotactic surgery: Increase in phosphorylation process

FDG PET for Lung Carcinoma: Monitoring Therapy

- Locally advanced NSCLC (stage IIIB and IV): 25-40%: Poor survival

- After completion of induction chemotherapy:
 - FDG PET > CT to detect residual disease
 - Persistent FDG + indicates poor prognosis

- Neoadjuvant chemoradiation can downstage and allow for subsequent treatment resulting in improved survival in 30% of patients.
 - FDG PET can monitor response

Slides are not to be reproduced without permission of author.
65-year-old male with non small cell carcinoma stage 3- s/p neoadjuvant chemo-radiation

Pre-therapy

Post-therapy

Slides are not to be reproduced without permission of author
FDG PET for H&N cancer: Monitoring Therapy

- Treatment advance stage (III and IV): chemo- and XRT
- Degree of FDG uptake pre-T predicts aggressiveness and poor survival*:
 - Pre-Therapy SUV > 7 predicts poor response
 - Post-therapy SUV >4 indicates residual disease and poor survival
- FDG PET can monitor radiation therapy **
 - FDG – at 4 months more accurate than at 1 months
 - FDG PET is reasonably accurate at 6 weeks post chemo-radiation #
- FDG PET can monitor neoadjuvant therapy***
 - To predict residual disease: sensitivity 90%, specificity 83%

FDG PET for Advanced H&N cancer: Monitoring Therapy

- 26 patients with stage III or IV HNSCC
- FDG PET at baseline and 6 weeks after completion of radiation and chemotherapy compared to histology or 6 months F/U

Results:
- FDG PET T+ (n=10): residual tumor, metastases or 2d primary (5 of which were occult clinically)
- FDG PET T- (n = 14)
- FDG PET F+ (n = 1)
- FDG PET F- (n = 1)
- Sensitivity: 90.9%
- Specificity: 93.3%

Slides are not to be reproduced without permission of author
FDG PET for Sarcomas: Monitoring Neo-adjuvant Therapy

- Heterogenous group of tumors: osteosarcoma is most common primary malignant bone sarcoma
- The response to neo-adjuvant chemotherapy
 - Important prognostic factor in osteogenic and Ewing’s sarcomas.
- Poor response to neo-adjuvant chemotherapy:
 - Higher failure rate of limb-salvage procedures instead of amputation.

FDG PET for Bone and Soft Tissue Sarcomas: Monitoring Therapy

- FDG PET can differentiate responders from non-responders in 80-90% of patients.
- Persistent uptake in benign therapy related changes has been reported.
- SUV post-therapy and ratio SUV pre-/ post-therapy correlate with histological response.

Gastrointestinal Stromal Tumors (GIST)

- Leiomyosarcoma from interstitial cells of the myenteric plexus
- Extremely poor prognosis.
- Express growth factor with tyrosine kinase activity.
- Imatinib (STI571 or Glivec, Novartis) is a selective tyrosine kinase inhibitor
- FDG PET: decreased uptake after a few days of therapy:
 - Phase II Trial of neoajuvant STI-571 for primary and recurrent operable malignant GIST expressing the KIT receptor tyrosine kinase (CD117).
- Study of 21 patients:
 - 13 responders by PET at 8 days (EORTC criteria) and 10 by CT at 8 weeks (RECIST)*
 - PET responders associated with better progression free survival (92% versus 12%)

Slides are not to be reproduced without permission of author
FDG PET for Germ Cell Tumors
Restaging and Monitoring Therapy

- Non-seminomatous germ cell tumors (NSGCT): 60%
 - embryonal carcinomas, choriocarcinomas, mixed histologies, teratomas

- Advanced disease: 60-85% have residual mass after completion of systemic therapy
 - NSGCT: 20-25% have residual tumor and 30-40% teratomas
 - Surgery indicated
 - FDG PET: good PPV, poor NPV because false – teratomas
 - FDG PET: kinetic analysis improve teratomas vs necrosis*

Spermon JR et al. BJU Int 2002;89:549-556.

Sugarawa Y et al. Radiology 1999;211:249-256.

Slides are not to be reproduced without permission of author.
FDG PET for Germ Cell Tumors
Restaging and Monitoring Therapy

✦ Seminomas: 40%
 ✦ < 3cm usually benign,
 ✦ > 3 cm: 27-41% have viable tumor, surgery indicated
 ✦ FDG PET: good PPV and NPV*

✦ Timing of FDG PET after therapy: less F- after 2 weeks**

✦ Detection of recurrence when elevated tumor markers
 ■ FDG PET : Good PPV, good NPV, localize***

✦ Prediction of response to therapy for relapsed GCT#

A 20-year-old male with a history of testicular ca presented with elevated tumor markers and normal CT scan.

Slides are not to be reproduced without permission of author
Recommendations of EORTC for Determining Tumor Response with FDG PET

- **Progressive metabolic response:**
 - Increase of SUV > 25%
 - Increase of extent of FDG uptake

- **Stable metabolic disease**
 - Increase of SUV < 25% or decrease < 15%
 - No visible change in extent

- **Partial metabolic response**
 - Decrease of a minimum of 15-25% SUV after 1 cycle of chemotherapy or greater than 25% after more than 1 cycle

- **Complete metabolic response:** No FDG uptake

Monitoring Response to Therapy with FDG PET:

Important:

- A negative FDG PET scan does not exclude residual microscopic disease
- Chemotherapy (with or without radiation) should be completed as planned based on histology/stage.
Applications for FDG PET Imaging in Oncology Approved by HCFA for Medicare Reimbursement

- Non-small cell carcinoma*
- Esophageal cancer*
- Colorectal cancer*
- Lymphoma*
- Melanoma* (excluding evaluation of regional LN)
- Head and Neck cancers* (excluding CNS)
- Thyroid cancer, follicular type (post-surgery, Tg > 10, WB 131I-)
- Breast cancer (excluding diagnosis, including monitoring therapy)
- Refractory seizures (presurgical evaluation only)
- Myocardial viability and perfusion

Covered for diagnosis, staging and restaging, not for monitoring therapy
Limited to selected high performance PET scanners only

Slides are not to be reproduced without permission of author