Overview of Dosimetry for Targeted Radionuclide Therapy

• Ruby F. Meredith, M.D., Ph.D.

University of Alabama
Comprehensive Cancer Center
Dept. of Radiation Oncology

• Member SNM MIRD committee
Simplified Dosimetry for a diverse audience
Dosimetry Definition

Process of relating the administered amount of radioactivity to the absorbed radiation dose of an organ or the whole body
Radionuclide Dosimetry

Overview

• How are absorbed doses determined?
• How accurate are dose estimates?
• How do dose estimates correlate with toxicity?
• How is administered activity planned?
Some Purposes of RIT Dosimetry

- For agents with significant and variable excretion, estimate individual patient distribution/clearance to optimize IA

- Compile database of normal organ radiation absorbed doses

- Assure normal organ radiation doses are within safe range before therapy
Sources of data acquisition

- Radioactivity deposited in organ of interest or WB can be estimated by:
 - Extrapolation from animal data
 - External measurements using a scintillation camera ***commonly used
 - Estimation through use of a compartmental model
 - Measurement of excretory fluids & blood pharmacokinetics
 - Direct measure, e.g. TLD, biopsies
Resources for Dosimetry

MIRD

Medical Internal Radiation Dose

• Name of a standing committee of the Society of Nuclear Medicine

• Recognized as a method to perform dose calculation for internal emitters
Radiation emissions:

- Penetrating vs. non-penetrating
- Beta vs gamma radiation
- surrogate for β^- ^{111}In for ^{90}Y
Tracer Principle

• small amount of radiopharmaceutical can be used to predict spatial & temporal distribution of larger amount in the same patient

• assumes that the biologic system is not perturbed by the diagnostic study
Imaging-based time-activity curve

In-111 Day 4, posterior

Slides are not to be reproduced without permission of author
Common Imaging Procedures

• > 3 planar studies; WB +/- regions

• Correct for scatter & attenuation
 -scatter: dual window Jaszczak method
 -attenuation: transmission scan
Common Imaging Procedures-2

- Use Standard to convert counts to MBq
- Draw ROI for organs, marrow, background
- Obtain time-activity curves for ROI
- Use CT or MRI to assess volumes vs. phantom

*MIRD 16 Siegel JA, et al.. J Nucl Med, 40, 37s –61s, 1999
Calculation of Absorbed Dose to an Organ

\[
\text{Absorbed Dose} = \frac{\text{Energy Absorbed from Ionizing Radiation}}{\text{Mass of Organ}}
\]
Source and Target Organs

For the administration of a radiopharmaceutical to a human, the time-dependent localization of activity in an organ is designated a source organ.

The organ that is the recipient of this radiation energy from the source organs is called a target organ.
Any organ can be simultaneously both a source & target. The energy deposited in that organ by activity in it is self dose.
Sources and Targets (Self – Irradiation)

![Diagram showing sources and targets](image-url)

131I - Iodide

Slides are not to be reproduced without permission of author
Absorbed Fraction

The fraction of the energy emitted by source and deposited in the target is called the absorbed fraction \(\phi_i \).
Specific absorbed photon fractions Thyroid source, I-131

- Thyroid → Thyroid 1.61×10^{-3}
- Thyroid → eyes 4.55×10^{-7}
- Thyroid → skin of head 4.06×10^{-7}
Absorbed Fraction – Example

Carbon-11
16% of the photons & 100% of the positrons are absorbed

\[\phi_Y = 0.16 \]
\[\phi_{np} = 1.0 \]
Absorbed Fraction
(S value)

depends on:

• Type and energy of the radiation

• Size, shape and composition of the source and target

• Distance between source and target, & type of material separating them
Cumulated Activity (Ã)

The Cumulated Activity is represented by the area under the time activity curve and has the dimensions of activity x time (uCi • hr)
Cumulated Activity (cont)

Activity

Area under the curve

Time
Cumulated Activity (cont)

The cumulated activity (\tilde{A}_h) in an organ h can be mathematically expressed as:

$$\tilde{A}_h = \int_{0}^{\infty} A_h(t) dt$$
MIRD Dose Equation (Simplified)

\[D = \tilde{A} \times S \]

Where: \(\tilde{A} \) is the Cumulated Activity

and

S is the mean absorbed dose per cumulated activity or S-factor
“How to” Information sources

- D. Fisher- Sem Rad Onc 10:123, 2000

- AAPM primer www.aapm.org ➔ report, #40

- SNM & MIRD websites
Computer aids to calculation: MIRDOSE software

- MaBDOSE T. Johnson, adds tumor
- MIRDOSE versions M. Stabin ‘96
 PC based software for ORNL models (adult male =70kg)
- couples tabulated absorbed fractions & radionuclide decay data with source organ residence time ➔ mean radiation dose/unit IA
MIRDOSE Update – M. Stabin

• Newest version of MIRDOSE – OLINDA – Organ Level Internal Dose Assessment (Java, beta testing).

• Most MIRDOSE 3 models carried over.
• New models included: MIRD head/brain, Yale voxel phantom, prostate gland, peritoneal cavity, others.
• Will be ONLY research/teaching tool – separate, smaller codes for clinical application will be developed and submitted for FDA approval.

• Linked to new RADAR (RADiation Dose Assessment Resource) on-line system for internal/external dose assessment.
RADAR Web Site
www.doseinfo-radar.com

• Decay data for >800 radionuclides
• Absorbed fractions for 11 phantoms
• Kinetic data for many radiopharmaceuticals
• Dose factors (like MIRD S values) for all 800 nuclides and 11 phantoms
• Fetal dose factors, skin dose factors, external dose factors
• Risk information, consent form language
• On-line training courses – internal, external dose
• MORE! -------- M. Stabin –
Other web sites/links

- SNM
- MIRD
- ICRP
How Accurate are Radionuclide Dose Estimates

1. Uniform organ dose MIRD formalism \(\rightarrow \) \(\sim \) 2 fold variance
e.g. 200cGy calculated:actual = 100-400

2. Assumptions:
 homogeneous distribution;
 std man phantom masses & distance of organs
How Accurate Are Tracer Studies?
Comparison of tracer-predicted vs. therapeutic radiation doses measured

<table>
<thead>
<tr>
<th>Agent</th>
<th>Disease</th>
<th>Predicted/Received</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>131I-LYM-1</td>
<td>NHL</td>
<td>0.91 – 1.38</td>
<td>Tracer at day -7</td>
</tr>
<tr>
<td>131I-antibodies</td>
<td>NHL, Leukemia</td>
<td>0.67 – 1.15</td>
<td>T1/2 for lung</td>
</tr>
<tr>
<td>111In-cT84.66</td>
<td>CEA-positive cancer</td>
<td>Concordance 0.60-0.99</td>
<td>Most normal organs studied</td>
</tr>
</tbody>
</table>

Slides are not to be reproduced without permission of author
Special Considerations for Marrow dosimetry
Marrow toxicity =

dose-limiting in most non-SCR studies of radionuclide therapy
[except peptide]
Marrow Dosimetry

• Blood method AAPM ➔ Act. in ECF of marrow + Remainder Body [non-involved marrow]

• Sacral or Lumbar imaging [overlap with disease, organs]
Marrow Dosimetry

- Weak → Moderate correlation of calculated marrow dose (and/or other parameters) with hematologic toxicity in most RIT studies
Ex: 1 Y-90-Ibritumomab-tiuxetan (N = 349): Hematologic Toxicity

• 0.4 mCi/kg, 0.3 mCi/kg → platelets;

• Hematopoietic support (n = 211)
 – Growth factors 18% of patients
 – Red blood cell transfusion 20%
 – Platelet transfusion 22%
 – Grade 3-4 toxicity correlates with
 – Bone marrow involvement
 – Number of prior therapies/purine analogues
Lack of Y-90-Ibritumomab hematologic toxicity correlation with:

- Marrow radiation dose estimates
- Whole Body radiation dose
- Blood AUC
- Blood effective half-time
Example 2: Dosimetry Rationale for I-131-Tositumomab

- WB dose as predictor of hemat. toxicity
- Heterogeneity in individual pharmacokinetics is considerable among patients
- Standardized dosing based on mCi/kg would result in “over” and “under” dosing by > 10% in > 50% pt.
- Patient-individualized dosing treatment improve mean tumor dose by > 50%; ↓ chance of “under” or ”over” dosing for marrow toxicity

Slides are not to be reproduced without permission of author
Range of mCi Required to Deliver Targeted WB Radiation Dose
75/65cGy* (N=634)

Total body radiation dose 75cGy (65 for Platelets < 150,000)
Impact of Fixed Dosing (mCi/kg) on Total Body Radiation Dose

Total Body Dose With Fixed 1.1 mCi/kg Dosing (N = 634)

LEGEND:
- **Green** - Below Target Range by ≥ 10%
- **Blue** - Within 10% of Target Range
- **Red** - Above Target Range by ≥ 10%

Zelenetz AD et al, Blood 2001:98 p134a
Posters are not to be reproduced without permission of author
Improving MIRD & other advances

• Model of **Prostate** Gland for Use in Internal Dosimetry. Stabin JNM 1994

• Revised Model of Adult **Head & Brain**. Bouchet et al JNM 1996

• MIRD #17: Non-uniform activity distributions-Radionuclide S values at the **Voxel** level. Bolch et al JNM 1999

• MIRD #19: Absorbed Fractions for 6 Age-dependent **Multi-region** Models of the **Kidney**. Bouchet et al JNM 2003
Example-Improved dose calculation using models of different height

• Previously only 1 adult male & female
• Autopsy data show correlation between body size & organ mass

Clairand et al, Phys Med Biol 45:2771, 2000
3 new adult male phantoms

160, 170, 180 cm Clairand et al Phys Med Bio
Correlation of increasing organ mass with height

![Graph showing the correlation between organ mass and body height. The graph includes data points for the right lung, left lung, and liver, each represented by different symbols. The x-axis represents body height in centimeters, ranging from 140 to 175 cm, and the y-axis represents organ mass in grams, ranging from 0 to 2,000 grams.]
Example-Improved dose calculation using models of different height

- Better correlation with height than mass

- ↑ Ht. 10cm ➔ 20-29% ➖ S value I-131
 - stomach, bladder

Clairand et al, Phys Med Biol 45:2771, 2000
Shen: individual organ masses vary from Std. Man phantom

• L-spine marrow specific mass
 increased correlation of marrow dose with heme toxicity,
 \(r = 0.29 \) for std. blood vs. 0.85

• Prediction not improved by adjustment for body weight, surface area, lean body mass. JNM 43. ‘02

• Liver/other organs changed dose 0.5-1.7x
Effort to Improve Accuracy

- Functional/anatomic fusion, e.g. PET/CT
- 3-D anatomically accurate dosimetry that includes non-uniformity - DVH
- Closer to actual size phantoms, individual organ masses
- Regional voxel-based S values
- More accurate calculations - OLINDA
Compromise is expected in correlation of dose calculations with toxicity due to:

* limitations of dosimetry model, e.g. non-uniform voxel activity

* non-dosimetry modifications
Calculated Dose Is \neq Biologic Dose

Physical/biologic interaction factors
- heterogeneous distribution
- dose rate effects
- effective range of radiation
- RBE, other characteristics
Biologic Factors Affecting Tolerance

*age, prior therapies, time since prior Rx,
*disease status-e.g. anemia,
marrow replacement;
*genetic factors and/or physiologic conditions - hypoxia that affects radio-sensitivity & repair
Adjustment for Biologic Factors improves dose/toxicity correlation

- Juweid: Prior chemo, time since chemo
- Wessels: age, gender, XRT, chemo. SNM 2000 $r=0.57$ improved to $r=0.80$
- Siegel: several marrow dose methods \rightarrow moderate correlation. FLT-3 (hematopoiesis stimulating cytokine) levels \rightarrow improved correlation
Biologic Effectiveness of Radionuclide Therapy

Agents/factors not contributing to radiation dose estimates. Chemotherapy, other biologic response modifiers

- Radiosensitizers, Cytokines, Growth factor inhibitor
- BuDR, IL-1, IL-2, anti-EGFr

Slides are not to be reproduced without permission of author
CONCLUSIONS
Possibilities for Improvement of Dosimetry Accuracy & Dose/Response Correlation

• Improved patient-specific models
• Individualized organ masses - Shen
• Adjust for tracer vs. Therapy differences
• Adjustments for biologic/conversion factors
• Find parameters with best correlation ➔ further study