Pediatric GI Tract Imaging
An Overview

Douglas F. Eggli, M.D.
Professor of Radiology
Chief, Division of Nuclear Medicine
The Pennsylvania State University
College of Medicine
The Milton S. Hershey Medical Center
Hershey, Pennsylvania
Pediatric GI Tract Imaging
Common studies

- Aspiration/Swallowing Function
- Esophageal Motility/Clearance
- Gastroesophageal Reflux
- Gastric Emptying
- Meckel’s Imaging
- Inflammatory Bowel Disease
Aspiration

- Sources of aspiration include
 - Oropharyngeal secretions
 - Refluxed gastric contents
- The “standard” GE reflux study does not adequately evaluate aspirated oropharyngeal secretions
- Sidney Heyman developed a technique for studying the aspiration of oropharyngeal secretions – the Radionuclide Salivagram.
Salivagram Technique

- **Radiopharmaceutical:** Tc-99m Sulfur Colloid 200 uCi to 300 uCi per drop
- One or two drops of Tc-99m sulfur colloid are placed on the tongue of the patient to be studied
- The oral cavity becomes coated with radiolabeled colloid
- Dynamic images are obtained over the chest for 60 minutes to 90 minutes
- Further delayed images can be obtained if there is still colloid in the mouth at the end of the initial dynamic sequence
Salivagram

- Detection of aspiration has a low incidence in a standard GE reflux study
- Aspiration can occur as a result of swallowing dysfunction in the absence of GE reflux
- In Heyman’s study, the Salivagram detected aspiration in 29% of patients with recurrent pneumonia
- Higher concentration of radioactivity per volume aspirated is the likely reason for better detection
Salivagram

Image Courtesy of Sydney Heyman, M.D.
Esophageal Motility
Single Swallow

![Graph showing esophageal transit over time for different conditions.](attachment:image.png)
Multiple Swallow

![Graph showing esophageal transit percentage over the number of swallows for normal subjects, achalasia, diffuse spasm, and scleroderma.](image)
Achalasia: Pathophysiology

- Loss of ganglion cells in the smooth muscle of the distal esophagus
- Increased Lower Esophageal Sphincter (LES) pressure
- Decreased to absent peristalsis in the distal esophagus
- Absence of coordinated LES relaxation in response to swallowing
- Dilation of the esophagus, especially distally
Clinical Presentation

- Low Incidence < 10 cases per million
- Age: infant to adult with peak age 20-40
- Sex Male = Female
- Not Familial

Clinical Symptoms
- Difficulty swallowing solid foods
- Regurgitation of undigested food (80% to 90%)
- Retrosternal chest pain (25% to 50%)
- Cough at night/aspiration (30%)
- Weight loss
Diagnosis

- Barium Swallow
- Esophageal Manometry
- Scintigraphy
Scintigraphic Technique

- Radiopharmaceutical: 1 mCi Technetium-99m Sulfur Colloid
- Mixed in 4 to 6 oz milk and poured over a single serving size package of cereal
- Patient sits upright in front of the camera and consumes meal with the camera running
- 15 second dynamic images obtained for 30 minutes
- ROI drawn over esophagus and stomach.
- Results are expressed as percent of total meal at peak activity in esophagus and percent retained every five minutes
Esophageal Motility
Clearance Data Normal Patient

Esophageal Clearance

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.64</td>
</tr>
<tr>
<td>10</td>
<td>2.08</td>
</tr>
<tr>
<td>15</td>
<td>2.69</td>
</tr>
<tr>
<td>20</td>
<td>1.50</td>
</tr>
<tr>
<td>25</td>
<td>1.86</td>
</tr>
<tr>
<td>30</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Peak Activity of 20.1% occurred @ 1.5 min
Achalasia

- Esophageal Clearance

- Peak Activity of 96.9% occurred at 2.7 min

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>52.8</td>
<td>42.6</td>
<td>39.7</td>
<td>33.7</td>
<td>24.0</td>
<td>21.8</td>
</tr>
</tbody>
</table>

Slides are not to be reproduced without the permission of the author.
Treatment

- **Drugs**
 - Calcium channel blockers
 - Anticholinergic agents
 - Nitrates
 - Opioids
- **Botox**
- **Balloon Dilation**
- **Esophageal Myotomy**
Following Balloon Dilation
Curves Post Dilation

Esophageal Clearance

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10.2</td>
</tr>
<tr>
<td>10</td>
<td>7.73</td>
</tr>
<tr>
<td>15</td>
<td>3.39</td>
</tr>
<tr>
<td>20</td>
<td>2.42</td>
</tr>
<tr>
<td>25</td>
<td>2.11</td>
</tr>
<tr>
<td>30</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Peak Activity of 26.7% occurred at 2.0 min.
GE Reflux In Children

- Most studies are performed on infants and small children.
- Reflux may normally occur in children under six months of age.
- Lower Esophageal Sphincter matures by six months of age.
- It is important to distinguish between rapidly cycling reflux and delayed esophageal clearance.
GE Reflux Technique

- **Radiopharmaceutical:** Tc-99m Sulfur Colloid, 1 mCi administered in a milk meal
- **Dynamic images are obtained at 3 to 5 second intervals over 60 minutes**
 - Short cycling reflux events can “disappear” in frames as short as 10 seconds
- **Images are obtained in posterior projection so that the patient can be adequately monitored**
- **Dynamic images are obtained again for 15 minutes at 2 hours to look for late reflux**
 - Some patients reflux only after the meal becomes acidified
- **Images to calculate gastric emptying and to look for aspiration can also be obtained as part of the GE reflux study**
Low level reflux events in the first 15 minutes after feeding are not considered to be pathologic.

When esophageal motility is normal reflux events clear within 20 seconds:
- Distention of the distal esophagus initiates a secondary stripping wave.

Reflux to the level of the oropharynx places the patient at risk for aspiration.

Report frequency, level, and duration.
Low Level Reflux
Mid-Level GE Reflux
Short Cycle GE Reflux
Normal Clearance
Slow Clearance
(5 Seconds per Frame)
Reflux to Oropharynx
10 Second Composite
(Reflux Disappears)
Aspiration Secondary to T-E Fistula
Chronic Cough/Recurring Pneumonia
Reflux Study
Quantitative Evaluation of Reflux
Reflux Curves
Quantitation

Graph showing the G-E reflux index (%) for reflux patients and normal controls. The data points are distributed across the graph, with some points highlighted at specific reflux indices: 45.6, 33.3, and 27.5.
GE Reflux Scintigraphy vs pH Probe

- **pH probe cannot evaluate the volume or level of reflux**
 - pH probe cannot tell the difference between 0.1 cc of reflux and 100 cc of reflux
 - pH probe cannot tell whether reflux is just across the LES or to the level of the cricopharyngeus

- **pH probe poorly characterizes reflux**
 - pH probe cannot tell the difference between rapidly cycling reflux and delayed esophageal clearance
 - This is a major determinant of therapy

- **pH probe can study the patient over a longer period of time**

- **pH probe can detect smaller volume infrequent reflux**

- **pH probe should be used to screen patients with a negative GE reflux scintigraphic study**
Scintigraphy vs pH Probe
Gastric Emptying

- Standard composition meal is more difficult to obtain in small children
- Minimum meal in a newborn is 4 ounces of infant formula.
- Age specific normals have been published for small children, however at least 50% emptying at one hour and 75% emptying at 2 hours are approximately the normal range.
- Greater than 20% emptying at T₀ qualifies for dumping
 – Caveat: If the patient is fed by tube or via gastrostomy and the tube tip is close to the pylorus, artificial dumping can occur.
- Once a child’s GI tract is mature enough for a standard gastric emptying meal, we use our standard solid emptying meal.
- If GE reflux is part of the clinical question, we will continue to use a milk meal.
Technique

- Add 1 mCi of Tc-99m sulfur colloid to 2/3 of the volume of a milk meal. The final 1/3 is administered as a “cold chaser” to clear radioactivity from the mouth and esophagus.
- The meal is administered within a 15 minute time interval.
- Images can be obtained dynamically as part of a GE reflux study or as static images immediately post feeding and every 15 minutes for 2 hours.
Determinants of Gastric Emptying

- Volume
- Calories
- Fat content
- Osmolality
- Rate of administration
 - Meal should be consumed within 15 minutes (before any emptying can start)
Milk Meal

- The meal volume administered for a milk meal is proportional to the patient size
 - Since volume is a determinant of gastric emptying, for any size patient the meal should be similar in volume
 - Very small volumes or very slow administration rates will produce invalid results

- Once the meal becomes acidified, milk empties like a solid

- You must have a normal range for the meal you are using

- Most of the Tc-99m sulfur colloid empties with the solid phase of the meal
Meckel’s Diverticulum

- Omphalomesenteric duct remnant containing mucosa from throughout the GI tract
- Occur at the insertion point of the vitelline duct on the antimesenteric surface of the small bowel (approximately 2 ft from the ileocecal valve)
- Incidence: 2% of the population
- Only about 25% of Meckel’s diverticula contain gastric mucosa
 - Virtually all bleeding Meckels contain gastric mucosa
 - Remainder present as lead points for small bowel obstruction
- 4% to 6% lifetime risk of complication
- Treatment is surgical resection
Patient Prep

- NPO for four to six hours (depending on patient’s age)
- Meckel’s scan should be done before other diagnostic studies to avoid potential artifacts
- Patient should have had none of the following for at least 5 days:
 - Laxatives
 - Aspirin or NSAIDs
 - Endoscopies
 - Barium
Meckel’s Scintigraphy

- Inject 100 uCi/kg body weight Tc-99m pertechnetate IV (min dose 1 mCi/max dose 10 mCi)
- Image dynamically for 45 minutes (one minute per frame, 128 matrix) with patient in the LPO position relative to the table and the camera anterior to the patient
 - This helps to keep secreted Tc-99m pertechnetate in the stomach
- Obtain static images in Anterior, LAO, RAO, post void and Trendelenberg positions at the end of the dynamic sequence
Pharmacologic Intervention

- Cimetadine – blocks release of accumulated activity from the mucosal production site (holds the activity in place)

- Pentagastrin – increases gastric secretion
 - May dilute the secreted activity
 - May increase gastric motility
 - Subcutaneous injections are painful

- Glucagon – paralyzes bowel

- Value is largely anecdotal (case reports), but widely employed.

- In a study of a dog model several years ago, it took computer analysis of counts in the lesion to show a benefit for intervention.
Normal Meckel’s Scan
Meckel’s Diverticulum

Immediate
5 Minutes
10 Minutes

20 Minutes
LAO
Trendelenberg
Intraluminal Pertechnetate
Jejunal Inflammation Due to Aspirin
Appendicitis
Meckel’s Diverticulum
Small Bowel Duplication

Case Courtesy of Michael Gelfand, M.D.
Inflammatory Bowel Disease

- Labeled White Blood Cells
 - In-111 labeled WBCs
 - Tc-99m HMPAO labeled WBCs

- Technetium labeled WBCs are preferred in children because of lower radiation dose
 - Tc-99m HMPAO WBC: Spleen 1.8 rad/mCi, WB 0.2 rem/mCi
 - In-111 WBC: Spleen 63 rad/mCi, WB 6.7 rem/mCi

- Sensitivity ranges from 90% to 97%
- Specificity ranges from 97% at 1 hour to 83% at 3 hours
 - Specificity decreases because of physiologic excretion
Inflammatory Bowel Disease

- **Crohn’s Disease**
 - “Skip” Lesions in colon
 - Involves small bowel as well as colon
 - Involves the full thickness of the bowel wall
 - Incidence 7 per 100,000

- **Ulcerative Colitis**
 - Continuous involvement of colon
 - Starts at the rectum and progresses proximally
 - Involvement limited to the mucosa
 - Does not involve small bowel
 - Incidence 10 to 15 per 100,000
Signs and Symptoms

- Similar for both Crohn’s and Ulcerative Colitis
- Chronic diarrhea
- Abdominal pain and cramping
- Blood in stools
- Loss of appetite
- Weight loss
- Fever
Tc-99m HMPAO WBC Imaging

- Inject 5mCi to 10 mCi Tc-HMPAO labeled WBCs, based on weight
 - Approximately 100 uCi/kg

- Obtain early static images with high resolution collimator 30 to 60 minutes post injection
 - Supine, standing upright, and TOD images for 10 min/image
 - Upright images drop transverse colon away from liver
 - TOD separates bladder from rectum

- Obtain delayed images 2 to 3 hours post injection

- Physiologic activity in bowel may appear by 3 hours
 - Usually appears first in the right lower quadrant and then moves distally
Normal WBC Imaging

1 Hour

3 Hours

Charron: Radiology 1999: 212:507-513
HMPAO WBCs at 4 Hours
Crohn’s Disease

Crohn’s Disease
Crohn’s Disease In-111 WBCs
Ulcerative Colitis

Charron: Radiology 1999; 212:507-513

Slides are not to be reproduced without the permission of the author
Ulcerative Colitis

Charron: Radiology 1999; 212:507-513

Slides are not to be reproduced without the permission of the author
Advantages of WBC Scintigraphy

- More accurate than colonoscopy (90% vs 80%)
- No false positives in controls
- Noninvasive
- Reflects the intensity and distribution of the inflammatory process
- Radiation dose is 1/3 to 1/2 of barium studies
- Positive result within 30 minutes in 88%
- No bowel prep is required
Limitations of WBC Scintigraphy

- Requires in vitro WBC labeling
- Does not define anatomic details (strictures)
- Distinction between colon and small bowel may be difficult due to paucity of anatomic landmarks when inflammation is focal
- Concurrent GI bleeding complicates interpretation.
- Although sensitivity increases with time, specificity decreases
 - Normal bowel activity can confuse interpretation after 3 hours
Pediatric GI Tract Scintigraphy

- Aspiration/Swallowing Function
- Esophageal Motility/Clearance
- Gastroesophageal Reflux
- Gastric Emptying
- Meckel’s Imaging
- Inflammatory Bowel Disease