Treatment Approach to Indolent Non-Hodgkin’s Lymphoma

John J. Densmore, MD, PhD

Division of Hematology/Oncology
University of Virginia Health System
Charlottesville, VA
Overview

♦ Epidemiology
♦ Classification
♦ Staging
♦ Treatment
Non-Hodgkin’s Lymphoma (NHL): Epidemiology (US)

Estimated annual incidence

- Non-Hodgkin’s Lymphoma (NHL):
 - Epidemiology (US)

~4% compound annual increase in incidence

Adapted from Greenlee et al. CA Cancer J Clin. 2001;5:15.

Slides are not to be reproduced without the permission of the author.
Estimated New Cancer Cases: 10 Leading Sites, by Sex, United States, 2003

<table>
<thead>
<tr>
<th>Sex</th>
<th>Site</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Prostate</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>Lung & bronchus</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Colon & rectum</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Urinary bladder</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Melanoma of skin</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Non-Hodgkin’s lymphoma</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Oral cavity</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Leukemia</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>All other sites</td>
<td>17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>Site</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32% Breast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12% Lung & bronchus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11% Colon & rectum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6% Uterine corpus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% Ovary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% Non-Hodgkin’s lymphoma</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>3% Melanoma of skin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3% Thyroid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2% Pancreas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2% Urinary bladder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% All other sites</td>
<td></td>
</tr>
</tbody>
</table>

*Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder.

Slides are not to be reproduced without the permission of the author.
Incidence of NHL Is Increasing, Especially in the Elderly (>60 Years)

Etiologic Factors in NHL

- **Viral** - EBV, HTLV-1, Hepatitis C
- **Bacterial** - Helicobacter pylori
- **Immunodeficiency**
 - Congenital: Ataxia telangiectasia, Wiskott-Aldrich, SCID
 - Acquired: AIDS, organ transplant, aging, autoimmune disease
- **Environmental and Occupational**
 - Herbicides (e.g., 2,4-D), pesticides
Factors affecting treatment decisions

- Type of NHL (biopsy)
 - Cytology
 - Growth rate (Indolent, Aggressive)
- Stage of disease
- Presence of symptoms
- Co-morbid conditions
WHO Classification of Lymphoid Malignancies

Cellular Origin of Disease

Precursor Cell
- B-Cell
 - Lymphoblastic leukemia/lymphoma
- T-Cell

Peripheral Cell
- B-Cell
 - Small lymphocytic/CLL
 - Lymphoplasmacytic
 - Marginal Zone
 - Follicular
 - Mantle Cell
 - Diffuse large B cell
 - Burkitt/Burkitt-like
- T-Cell
 - Mycosis fungoides
 - Sezary Syndrome
 - Angioimmunoblastic
 - Peripheral (NOS)
 - Anaplastic large cell
WHO Classification of Haematopoietic and Lymphoid Tumours: B-Cell Neoplasms

<table>
<thead>
<tr>
<th>Indolent</th>
<th>Aggressive</th>
<th>Very Aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small lymphocytic/CLL</td>
<td>• PLL</td>
<td>• Precursor B-lymphoblastic lymphoma/Leukemia</td>
</tr>
<tr>
<td>• Lymphoplasmacytic/IMC/WM</td>
<td>• Plasmacytoma/Multiple myeloma</td>
<td>• Burkitt’s lymphoma/B-cell acute leukemia</td>
</tr>
<tr>
<td>• Hairy Cell leukemia</td>
<td>• Mantle cell</td>
<td>• Plasma cell leukemia</td>
</tr>
<tr>
<td>• Marginal zone lymphoma</td>
<td>• Follicle center lymphoma, follicular, grade III</td>
<td></td>
</tr>
<tr>
<td>– Extranodal (MALT)</td>
<td>• Diffuse Large B-cell</td>
<td></td>
</tr>
<tr>
<td>– Nodal</td>
<td>• Primary mediastinal large B-cell lymphoma</td>
<td></td>
</tr>
<tr>
<td>– Splenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Follicle center lymphoma, follicular, grade I-II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency of NHL Subtypes in Adults

Mantle cell (6%)
Peripheral T-cell (6%)
Indolent (35%)
Diffuse large B-cell (31%)
Composite lymphomas (13%)

Other subtypes with a frequency ≤2% (9%)

Slides are not to be reproduced without the permission of the author.
Modified Ann Arbor Staging of NHL

Stage I Involvement of a single lymph node region

Stage II Involvement of ≥ 2 lymph node regions on the same side of the diaphragm

Stage III Involvement of lymph node regions on both sides of the diaphragm

Stage IV Multifocal involvement of ≥ 1 extralymphatic sites ± associated lymph nodes or isolated extralymphatic organ involvement with distant nodal involvement

Slides are not to be reproduced without the permission of the author.
Staging of NHL

♦ CT scans of Chest, Abdomen and Pelvis

♦ Bone marrow biopsy

♦ PET scan:
 – Indicated for staging and follow up of both NHL and HL
 – High sensitivity for aggressive NHL, less for indolent
 – Several trials have demonstrated improved sensitivity over CT
 – Very useful for post-treatment evaluation and follow up

♦ CT/PET:
 – Further improvement in localization of PET signal
NHL: Treatment

- Indolent NHL
 - Follicular Lymphoma
 - Small lymphocytic lymphoma
 - Marginal zone NHL (MALT)

- Transformed lymphoma
 - Change from indolent to aggressive disease
 - (ie follicular to large cell)

Adapted from Horning. *Semin Oncol.* 1993;20(suppl 5):75.

Slides are not to be reproduced without the permission of the author.
Treatment Strategies for Indolent NHL

Stage I-II Disease
- “Watchful waiting”
- Radiation
- Chemotherapy

Stage III-IV Disease
- “Watchful waiting”
- Purine analogs
- Alkylating agents
- Combination chemotherapy
- Monoclonal antibodies (conjugated and unconjugated)
- Chemotherapy + antibodies
- Intensive chemotherapy + stem cell transplantation
Follicular Lymphoma: Clinical Management

Indolent B Cell Lymphoma

- Localized
 - Involved/Extended Field Radiation

- Advanced Low Tumor Burden

- Advanced High Tumor Burden
 - Observation
 - Therapy
Follicular Lymphoma
Indications for Therapy in Advanced Disease

- Cytopenias secondary to BM infiltration
- Threatened end-organ function
- Symptoms attributable to disease
- Bulk at presentation
- Steady progression during a period of observation >6 months
- Presentation with concurrent histologic transformation
- Massive splenomegaly
Chemotherapy for Indolent Lymphoma

- Not curable with conventional therapy
- Observation is appropriate if there are no indications for therapy
- High initial response rates to chemotherapy, but majority will relapse
- Tend to remain chemotherapy sensitive at the time of relapse
- Response duration is generally shorter with each course of therapy
Indolent NHL Responds to Repeated Chemotherapy With Shorter Durations of Response

Responding patients (n = 110) in remission through 4 treatments

<table>
<thead>
<tr>
<th>CR</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.0</td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
</tr>
<tr>
<td>3</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort</th>
<th>10 Year DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford</td>
<td>44%</td>
</tr>
<tr>
<td>St Barts</td>
<td>45%</td>
</tr>
</tbody>
</table>
Observation for Stage I/II Follicular Lymphoma

- 43 pts who deferred therapy for at least 3 mo
- Median follow-up of 86 months
 - 27 pts not yet treated (63%)
 - 16 pts: median time to treatment of 22 months
- Estimated survival:
 - 5 yr: 97%
 - 10 yr: 85%
 - 20 yr: 22%

Observation for Stage I/II Follicular Lymphoma

Progression-Free Survival

Overall Survival

Traditional Treatment Approaches For Advanced Stage Follicular Lymphoma

- Watch and wait
- Oral chlorambucil or cyclophosphamide +/- prednisone
- Cyclophosphamide, Vincristine, Prednisone (CVP)
- CHOP (CVP plus doxorubicin)
- Fludarabine -based regimens
Evolving Approaches To Treating Advanced Stage Follicular Lymphoma

- Rituximab
- Chemotherapy + rituximab
- Interferon
- 90Y-Ibritumomab tiuxetan
- 131I-Tositumomab
- Autologous transplants*
- Allogeneic transplants*
- Vaccines*
- BCL2 antisense*
- Investigational*
Initial Therapy of Follicular Lymphoma With Alkylator-Based Regimens

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Response (%)</th>
<th>5-Year (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>CR</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>(St. Bartholomew’s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVP</td>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>(Europe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP-B</td>
<td>93</td>
<td>66</td>
</tr>
<tr>
<td>(CALGB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProMACE/MOPP</td>
<td>83</td>
<td>47</td>
</tr>
<tr>
<td>(NCI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems with Traditional Chemotherapy

- Non-specific effects: target dividing cells
- Acute toxicity
 - Cytopenias with risk of bleeding, infection, transfusion
 - Hair loss
 - Nausea, vomiting
- Chronic toxicity
 - Risk of bone marrow damage: myelodysplasia, leukemia
 - Cardiac, neurotoxicity
- Duration of therapy generally 4 to 6 months
Target Antigens: Important Features for Immunotherapy

- Expressed on all tumor cells
 - Not present on critical host cells
 - No significant toxicity if all antigen+ cells eliminated
- High copy number
- No mutations or variant antigens
- Required for critical biologic function or cell survival
- Not shed or secreted
- Not modulated after antibody binding
CD20 Is Not Expressed on Stem Cells or Plasma Cells

Slides are not to be reproduced without the permission of the author.
B-Cell Lymphomas Express Several Antigens That Can Be Targeted

Slides are not to be reproduced without the permission of the author.
Proposed Mechanisms of Action for MoAbs

- CDC
- ADCC
- Apoptosis

Slides are not to be reproduced without the permission of the author
Rituximab in Relapsed or Refractory Low-Grade NHL

- Chimeric monoclonal antibody to CD20
- Dose: 375 mg/m²/wk × 4 or 8 weeks
- Response rate was 48%
- Response rates differed significantly in patients with follicular and small lymphocytic subtypes (60% vs 13%, P < .01)
- Median duration of response 11.2 months

Rituximab: Summary of Safety

- Infusion-related events are the most common toxicity with grade 3 or 4 in fewer than 10% of patients
- Infusion-related toxicity are most frequently associated with the first rituximab infusion
- Severe tumor lysis syndrome, which can be fatal, occurs rarely (<0.1%), and usually in patients with high circulating malignant lymphocyte counts, large tumor bulk
- Not associated with common chemotherapy-associated toxicities: marrow suppression, nausea, hair loss
Rituximab + Chemotherapy in First-Line Treatment of Indolent NHL

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Number of Evaluable Patients</th>
<th>CR Rate</th>
<th>Median Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOP + R</td>
<td>40</td>
<td>55%</td>
<td>> 62 months</td>
</tr>
<tr>
<td>Fludarabine + R</td>
<td>50</td>
<td>80%</td>
<td>> 15 months</td>
</tr>
<tr>
<td>FND + R</td>
<td>52</td>
<td>73%</td>
<td>> 12 months</td>
</tr>
<tr>
<td>CHOP → R</td>
<td>85</td>
<td>54%</td>
<td>38 months</td>
</tr>
<tr>
<td>FN → R</td>
<td>32</td>
<td>47%</td>
<td>24 months</td>
</tr>
</tbody>
</table>
CVP + Rituximab: Study Design

- Follicular NHL, stage III/IV
- No previous treatment

Randomize

CVP x 8 cycles

R-CVP x 8 cycles

- Both regimens administered Day 1, repeated q 21 d
 - CTX 750 mg/m2, VCR 1.4 mg/m2, Pred 40/m2 d 1-5
 - RTX 375/m2 day 1 for R-CVP
CVP + Rituximab: Efficacy

<table>
<thead>
<tr>
<th></th>
<th>CVP</th>
<th>R-CVP</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response rates - overall</td>
<td>57%</td>
<td>81%</td>
<td>< .0001</td>
</tr>
<tr>
<td>complete</td>
<td>10%</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Median time-to-failure</td>
<td>7 mo</td>
<td>26 mo</td>
<td>< .0001</td>
</tr>
<tr>
<td>Median time-to-progression</td>
<td>13 mo</td>
<td>27 mo</td>
<td>< .0001</td>
</tr>
</tbody>
</table>

- Median follow-up 18 months

Slides are not to be reproduced without the permission of the author.
R-CVP vs CVP in Stage III/IV Follicular NHL

Log-rank P values
Without Stratification by Center: <0.0001
With Stratification by Center: <0.0001

Marcus et al, Abstr. 87, ASH 2003
Current Role for Rituximab

- **Initial therapy**
 - With chemotherapy (R-CVP, R-CHOP, R-Fludarabine)
 - As a single agent

- **Relapsed disease**
 - Single agent x 4 or 8 weeks (FDA indication)
 - Can retreat if continuing to get response
 - With chemotherapy

- **Goal is control of disease, not cure**
Rationale for Radioimmunotherapy in NHL

- NHL is sensitive to radiation
- Radiotherapy may cure limited-stage indolent NHL but is too toxic for advanced-stage disease
- Radiolabeled antibodies deliver radiation to tumor cells
- Radioimmunotherapy can kill both bound and neighboring tumor cells, overcoming the problem of access in bulky or poorly vascularized tumors
Radioimmunotherapy Produces a Crossfire Effect

Naked antibody

Radiolabeled antibody

Anti-CD20 Radioimmunoconjugates (RICs) for NHL

<table>
<thead>
<tr>
<th></th>
<th>Zevalin™</th>
<th>Bexxar™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent antibody</td>
<td>IDEC-2B8/ Anti-B1/</td>
<td>Anti-B1/ Tositumomab (murine)</td>
</tr>
<tr>
<td></td>
<td>Ibritumomab (murine)</td>
<td></td>
</tr>
<tr>
<td>Radionuclide</td>
<td>Yttrium-90</td>
<td>Iodine-131</td>
</tr>
<tr>
<td>Antibody (unlabeled)</td>
<td>Rituximab (chimeric)</td>
<td>Anti-B1 (murine)</td>
</tr>
<tr>
<td>Antibody (dosimetric)</td>
<td>IDEC-In2B8</td>
<td>131I-Anti-B1</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission</td>
<td>Pure β-emitter</td>
<td>γ- and β-emitter</td>
</tr>
<tr>
<td>Radiation penetration</td>
<td>5–10 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Half-life</td>
<td>2.7 days</td>
<td>8.1 days</td>
</tr>
<tr>
<td>Dosimetry required</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
- Zevalin™ and Bexxar™ are trademarks of GlaxoSmithKline.
- Slides are not to be reproduced without the permission of the author.
90Y Ibritumomab Tiuxetan

- **Ibritumomab**
 - Murine monoclonal antibody that binds to the CD20 antigen

- **Tiuxetan** (chelator)
 - Conjugated to antibody, forms strong urea-type bond with radioisotope

- **Isotope**: 90Y (pure β emitter)
\(^{90} \text{Y} \) Ibritumomab Tiuxetan: Approved Indication

- \(^{90} \text{Y} \) ibritumomab tiuxetan is indicated for the treatment of patients with relapsed or refractory low-grade, follicular, or transformed B-cell NHL, including patients with rituximab-refractory follicular B-cell NHL.
Tositumomab

- Murine IgG2 alpha monoclonal antibody that binds to the CD20 antigen

- Tyrosine residue bond conjugates antibody with radionuclide

- **Radionuclide**—131I (β and γ emitter)

131I radionuclide

$\beta + \gamma$ radiation
The 131I tositumomab therapeutic regimen (tositumomab and 131I tositumomab) is indicated for the treatment of patients with CD20 positive, follicular NHL, with and without transformation, whose disease is refractory to rituximab and has relapsed following chemotherapy.
Radioimmunotherapy: Efficacy

- High single agent response rates
- Active in patients that are Rituximab-refractory
- Active in indolent and transformed lymphoma
- May be more effective when used earlier in treatment course
Objective: Compare the safety and efficacy of the ibritumomab tiuxetan regimen and rituximab alone in patients with relapsed or refractory low-grade, follicular, or transformed B-cell NHL.

Randomized Phase 3 Trial: Study Design

- Stratified by IWF groups A, B–D, or transformed
- Randomized
- Rituximab 375 mg/m²/wk × 4
- ⁹⁰Y ibritumomab tiuxetan and rituximab

90Y Ibritumomab Tiuxetan vs Rituximab

Phase 3 Trial: Response Rates

As assessed by an independent review panel using International Workshop criteria.

<table>
<thead>
<tr>
<th></th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90Y ibritumomab tiuxetan (n = 73)</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>80</td>
</tr>
<tr>
<td>CR</td>
<td>30</td>
</tr>
<tr>
<td>CRu</td>
<td>4</td>
</tr>
<tr>
<td>Rituximab (n = 70)</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>56</td>
</tr>
<tr>
<td>CR</td>
<td>4</td>
</tr>
<tr>
<td>CRu</td>
<td>16</td>
</tr>
</tbody>
</table>

*P = .002
P = .04*
¹³¹I Tositumomab Pivotal Trial in Relapsed NHL: Efficacy

<table>
<thead>
<tr>
<th></th>
<th>Last qualifying chemotherapy</th>
<th>¹³¹I tositumomab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>17/60 (28%)</td>
<td>39/60 (65%)</td>
</tr>
<tr>
<td>Median (95% CI) duration of response (mo)</td>
<td>3.4 (2.5–4.7)</td>
<td>6.5 (3.1–11.3)</td>
</tr>
<tr>
<td>Complete response</td>
<td>2/60 (3%)</td>
<td>12/60 (20%)</td>
</tr>
<tr>
<td>Median (95% CI) duration of progression-free survival (mo)</td>
<td>6.3 (5.4–8.1)</td>
<td>8.4 (5.1–12.9)</td>
</tr>
</tbody>
</table>

Median follow-up, 10 mo; range, 6–20 mo.

Bexxar™ for Previously Treated NHL Survival

Slides are not to be reproduced without the permission of the author.
⁹⁰Y Ibritumomab Tiuxetan: Durable Remissions

<table>
<thead>
<tr>
<th>Study (n)</th>
<th>Overall responses</th>
<th>CR,CRu</th>
<th>Range of ongoing response (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Median DR (mo)</td>
<td>%</td>
</tr>
<tr>
<td>Phase 1-2 (51)</td>
<td>73</td>
<td>11.7</td>
<td>29*</td>
</tr>
<tr>
<td>Phase 2 (30)</td>
<td>83</td>
<td>11.5</td>
<td>47</td>
</tr>
<tr>
<td>Phase 3 (73)</td>
<td>80</td>
<td>13.9</td>
<td>34</td>
</tr>
</tbody>
</table>

*Data in patients with CR only.

Durable CR with Bexxar

- 255 pts treated on 5 studies
 - Overall RR 47-65%, median duration 12-18 months
- 28% of pts treated on Rituxan-refractory trial and 23% of those treated on Rituxan-naïve protocols had durable CR
 - Durable CR = >12 month PFS
- Median 3-4 prior therapies, majority Stage III or IV
- 9-27% with transformed disease
- At median follow up of 4.6 years, 75% remain in CR

Coleman, et al. ASH 2003, Abstract 89
Radioimmunotherapy: Safety

- Adverse events are primarily hematologic
- Grade 3 or 4 toxicity occur later (7–9 weeks) than with myelosuppressive chemotherapy (1–2 weeks) and correlate with:
 - Bone marrow impairment
 - Bone marrow involvement by lymphoma
 - Number of prior therapies, purine analogues
- Nonhematologic AEs are:
 - Primarily grade 1 or 2
 - Not associated with hair loss, severe mucositis, or persistent nausea and vomiting
90Y Ibritumomab Tiuxetan Integrated Safety (N = 349): Most Common Nonhematologic AEs (Incidence ≥10%)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Grades 1, 2</th>
<th>Grades 3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Asthenia</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Fever</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Increased cough</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Throat irritation</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

(Witzig, et al. 2003)
Median Blood Cell Counts After Treatment

- Hemoglobin (g/dL)
 - Hgb = 10

- ANC (10^3/µL)
 - ANC = 1000
 - ANC = 1000

- Platelets (10^3/µL)
 - Platelets = 50,000

Study week

Slides are not to be reproduced without the permission of the author
RIT Safety and Efficacy: Summary

- Generally well tolerated; hematologic toxicity is dose limiting
 - Proper patient selection is important to ensure safety

- High overall and complete response rates in relapsed or refractory indolent, follicular or transformed B-cell NHL

- Efficacy in patients who no longer respond to Rituximab

- Regimens can be completed within 7-9 days in an outpatient setting

- Prolonged responses in some patients
Subsequent Therapy After 90Y Ibritumomab Tiuxetan Is Well Tolerated

- Retrospective analysis (N = 171)
 - Compared with control group not treated with ibritumomab tiuxetan
- Median number of subsequent therapies: 2 (range, 1–7)
 - CHOP +/or rituximab most common first therapy
- No significant differences in toxicity of chemotherapy between groups
- 7 patients underwent successful autologous transplantation with peripheral blood stem cells collected after treatment with ibritumomab tiuxetan; 1 patient required bone marrow collection

Ansell et al. ASH 2003, Abstract 4956.
Subsequent Therapy After Ibritumomab Tiuxetan: Response Rates

Cytotoxic chemotherapy after Tositumomab (Bexxar)

- 63 pts treated at Cornell who were refractory or relapsed after initial response
- Subsequent treatments included Rituximab, Radiation, Anthracyclines, Fludarabine, Platinum
- 24% received auto or allo SCT
- Treatments well tolerated, no unexpected toxicities

Slides are not to be reproduced without the permission of the author
RIT: Where Does It Fit in a Treatment Plan?

- Treatment plans differ with
 - Patient’s clinical status
 - Patient’s medical history
 - Histologic type
 - Presence of bulky disease
Where Does RIT Fit?

- In patients without compromised bone marrow
- In patients who are at greater risk for the side effects of chemotherapy
 - Elderly
 - Comorbidities
- In patients with transformed NHL who are not good candidates for aggressive chemotherapy
- In patients in whom a short and highly effective course of therapy is desirable
- May be more effective earlier in treatment continuum
Risks And Benefits Of Primary Therapies

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Remission Rate</th>
<th>Durability</th>
<th>Morbidity</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch and Wait</td>
<td>0/+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single agent chemo</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CVP, CHOP, FND</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Rituximab</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Radioimmunotherapy</td>
<td>+++/++++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Rituximab-chemotherapy</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Auto transplant</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Allo transplant</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Legend:
- **Ri:** Remission Rate
- **Du:** Durability
- **Mo:** Morbidity
- **Mo:** Mortality
Follicular Lymphoma: Considerations for Treatment Approach

- **Patient Characteristics**
 - Age
 - Symptoms
 - Short & long term goals
 - Co-morbidity
 - Preserve future options
 - Reimbursement

- **Disease Characteristics**
 - Stage
 - Grade
 - Transformation
 - Sites of involvement
 - Prior therapy
 - Time from prior therapy
Radioimmunotherapy: Future Directions

- Other hematologic malignancies
 - Aggressive NHL
 - Mantle cell lymphoma

- Patients with significant marrow involvement

- Front-line

- Consolidation after chemotherapy

- Maintenance with rituximab

- Retreatment

- Preparative regimens for transplant