Overview of Current Education of Nuclear Medicine Technologists in Europe

Suzanne Dennan, Superintendent Radiographer, St. James’s Hospital, Dublin, Ireland.

Slides are not to be reproduced without permission of author.
Considerable differences between countries

2 models of training exist:

1. University-based training:
 - undergraduate/postgraduate
 - BSc(3 years)/MSc(2 years)

2. Professional school:
 - following secondary school
 - 2/3 years
 - no university degree
Education Schemes in Europe

- **Course focus:**
 - specialised nuclear medicine training only
 - radiography/nuclear medicine/radiotherapy combined

- No international harmonisation of curricula:
 - content
 - hours of theory
 - practical training
Issues for Consideration

- European qualifications not comparable
- Technologists cannot freely work throughout Europe
- Technologist duties vary between countries:
 - in accordance with National Legislation
 - role development
- 25 countries:
 - many different languages
 - cultural differences
Overview of Training in Europe

Models of Technologist Training

University-based

Professional School

2 years

3 years
University-based Training

- United Kingdom
- Ireland
- The Netherlands
- Bulgaria
- Portugal
- Slovenia
- Malta
United Kingdom

- Radiographers:
 - undergraduate radiography BSc (3/4 years)
 - 1-2 years postgraduate radiographic experience mandatory
 - nuclear medicine (n/med.) postgraduate course:
 (1) Diploma - usually 18 months
 (2) MSc - 2 years
 - role development encouraged:
 (1) advanced level practitioners/consultant radiographers
 (2) image interpretation by radiographers in some centres
United Kingdom

- Medical technical officers (MTO’s):
 - range of qualifications:
 - (1) Higher National Diploma in Medical Physics and Physiological Measurement
 - (2) biological science degree
 - on-the-job experience
 - may undertake same postgraduate courses as radiographers
Ireland

- Radiographers only
- Training similar to UK:
 - undergraduate radiography BRad (4 years)
 - 1-2 years postgraduate radiography experience
- Postgraduate n/med. course:
 - 1 year Higher Diploma in Nuclear Medicine
 - 2 year MSc
The Netherlands

- 4 year BSc
- Graduates licensed to work as technologists in:
 - diagnostic radiography, including CT, MRI, U/S
 - nuclear medicine
 - radiation therapy
- N/med. curriculum: 770 hours
- Old 3 year hospital-based programme still exists
The Netherlands

- N/med. only training scheme:
 - Higher General Continued Education (HGCE) graduates (3.5 years)
 - Individuals changing profession, e.g., chemical analysts with a background of HGCE (2.5 years)
 - Practical training in n/med. dept. supervised by high school
Bulgaria

- Technologists trained in radiology and n/med.
- BSc - 3 years
- MSc - additional 2 years
- N/med. undergraduate curriculum:
 - lectures = 19 hours
 - tutorials = 26 hours
 - clinical training = 2 weeks (+ further 1 month)
Portugal

- Separate n/med. technologist training
- BSc - 3 years
- Licence in nuclear medicine - 1 additional year
- Intended to amalgamate two training cycles
- Postgraduate Master’s available - early stages
Slovenia

- “Radiological engineers”
- Combined radiographic, radiotherapy and n/med. training
- Diploma - 3 years’ full-time study
- Graduates supervised for first 9 months
- State examination
- Additional nuclear medicine training:
 - 2 semesters
 - certificate of “radiological engineer specialist in nuclear medicine”.

Slides are not to be reproduced without permission of author
Malta

- BSc - 4 years
- n/med. training included in undergraduate radiographic course
- 4 weeks clinical placement
Professional School - 2 years

- Czech Republic
- Hungary
- Poland
- Slovakia
- Spain
Czech Republic

- Nurses and technologists train in specialised secondary medical schools - 2 years
- May specialise in radiography, radiotherapy or n/med. after 3 years professional practice
- Specialisation:
 - 1 year in own workplace
 - 2 weeks external placement
 - oral exam
- Under reform
Hungary

- Nuclear medicine training is separate
- Training within or outside the school system
- Individuals with a state licence are permitted to educate others
- 1 technologist’s school:
 - (1) basic training (2 years’ full-time)
 - (2) advanced:
 - 1 year postgraduate training
 - 4 years n/med. practice mandatory
Poland

- “Radiology technologists”
- Combined radiography, radiotherapy and n/med. training
- N/med. curriculum = 60 hours
- Incorporation of schools into medical university system
- Proposed 5 year course:
 1. Licentiate of Sciences (3 years)
 2. Optional MSc (2 years)
Slovakia

- "Senior" technologists:
 - university degree in engineering or physics
 - "physicists"
- "Junior" technologists:
 - combined radiography, radiotherapy, n/med. training course
Spain

- “Higher Technologist of Diagnostic Imaging”
- Combined radiology and n/med. technology training
- N/med. comprises 30% of curriculum
Professional school: 3 years

- Austria
- Belgium
- France
- Germany
- Italy
- Norway
- Switzerland
Austria

- Combined radiography, radiotherapy and n/med. technologist training.
- N/med. curriculum:
 - 185 hours
 - 8 weeks practical
- Laboratory technologists also work in n/med:
 - no obligatory postgraduate training
 - attend regular meetings and courses 3 times a year
Belgium

- N/med. technologists include:
 - engineers
 - nurses
 - pharmacy assistants etc.
- Combined radiography, radiotherapy and n/med. training
- Postgraduate training organised twice a year by the Belgian Society of Nuclear Medicine - 6 hours
- Transition to 3 year training programme:
 - first graduates, June, 2004
France

• Awards:
 1. French State Diploma (DE) for Radiographers
 2. Diploma for Superior Technologists in Medical Imaging and Therapeutic Radiology (DTS IMRT)
• Combined radiography, radiotherapy and n/med. training
• Major part of French curriculum devoted to radiology and radiotherapy.
• N/med. theory hours much higher in DE training (60 vs. 40)
• Practical training:
 - DE = 80 hrs
 - DTS IMRT = 112 hrs
• Radiopharmacy not taught in detail
Germany

- “Medical-Technical Assistants of Radiology”,
 = radiographic/nuclear medicine technologists
- Licence and title issued by regional government
- Combined radiographic, radiotherapy and n/med.,
 radiation protection and measurement training
- N/med. curriculum:
 - theory = 120 hrs
 - practical = 300 hrs
 - clinical = 300 hrs
Italy

- **Combined radiographic, radiotherapy and n/med. training**
- **Transfer to university system (2001):**
 1. **Level 1 (basic)**
 - 3 years
 - n/med. and PET covered in 3rd year (200 hrs)
 2. **Level 2 (postgraduate title or Master)** - 2 years
Norway

- Nuclear medicine technologists recruited from radiographers or medical laboratory technologists
- Supplementary nuclear medicine training course undertaken
- Curriculum - 100 hours
- Proposed university-based education
Switzerland

- Combined radiography, radiotherapy and n/med. training
- Move to university-based education in French-speaking part of country (BSc level)
No Established System

- Greece
- Croatia
Greece

- Technologists come from public technology schools specialising in medical equipment or laboratory medicine
- 1 radiography technologist’s school with n/med. on the curriculum
- Most nuclear medicine education learnt from practice
Croatia

- No established training
- Each hospital trains its own technologists in radiography/nuclear medicine
- Technologists originate from high schools for nursing or are clinical laboratory technologists
Miscellaneous

● Finland:
 - n/med. included in radiographic studies
 - polytechnics organise extra n/med. courses for medical laboratory technologists and nurses.
 - more n/med. training is being sought
Conclusions

- Wide difference in n/med. technologist training in Europe
- Technologist movement within Europe limited
- Move towards university-based training
- CPD not compulsory in all European countries
References

ISRRT (2003) “Conditions for the Education of Radiographers within Europe” No.8, August 2002

Bernadette Moran, Ireland.

Sylviane Prevot, France.

Mauro Schiavini, Italy.

Paul Bezzina, Malta.

Kyllikki Hanninen, Finland.

Sybille Fischer, Germany.

Peter Hogg, United Kingdom.