Nuclear Medicine & Diabetic Foot Infections

Christopher J. Palestro, M.D.
Professor & Chief
Nuclear Medicine & Molecular Imaging
North Shore Long Island Jewish Health System
Manhasset & New Hyde Park, New York
Diabetes Mellitus

Total prevalence in USA: ~ 23-24 million (7% of population)
 17 million diagnosed
 > 6 million undiagnosed

60%-70% of diabetics have mild to severe nervous system damage
 30% of diabetics ≥ 40 yrs. old have impaired sensation in the feet

Severe forms of diabetic neuropathy major contributing cause of LE amputations
 In 2002, 60% (~ 82,000) of all nontraumatic lower limb amputations performed on diabetics
The Foot

26 bones
 7 tarsals
 5 metatarsals
 14 phalanges
Numerous joint articulations
2 dorsal muscles
4 layers of plantar muscles
Intricate network of vessels & nerves
The Foot

• Hind foot
 Proximal row of tarsal bones (talus, calcaneus, & navicular)
 Distal tibia
 Distal fibula

• Mid foot
 Distal row of tarsal bones (cuboid + 3 cuneiform bones)

• Forefoot
 5 metatarsals
 14 phalanges
The Foot

HIND FOOT

MID FOOT

FORE FOOT

HINDFOOT MIDFOOT FOREFOOT

Slides are not to be reproduced without permission of author.
The Diabetic Forefoot

Pedal trophic (mal perforans) ulcer
Most common complication
Usually underlies distal metatarsal/phalanx
Multifactorial etiology
 Unperceived, repeated injury & altered
 weight bearing \rightarrow bony deformity,
callus formation, skin fissuring &
cracking \rightarrow frank ulcer formation
The Diabetic Forefoot

Pedal ulcers
Directly underlie > 90% of osteomyelitis cases
Present in most infection-related amputations
The Diabetic Mid/Hind Foot

Neuropathic (Charcot) joint
Most common complication
35% of diabetics develop neuropathy
5% develop neuropathic joint
5th – 7th decades of life
≥ 15 year h/o diabetes
Neuropathic Joint

Pathophysiology
Diminished pain sensation
Repetitive stress on an insensitive foot
→ bone/joint disruption, varus/valgus deformities, joint instability, degeneration & destruction
Endless cycle of injury, destruction, incomplete healing, partial repair
→ grossly deformed foot
Neuropathic Joint

• Clinical Presentation
 Swelling (often massive)
 Crepitis (2^0 to bony destruction)
 Palpable loose bodies
 Large osteophytes
 Synovial effusions
 Noninflammatory/hemorrhagic
 Predominantly mononuclear cells
 Often painless
 Ulcers over hypoesthetic
 weight bearing areas
Diabetic Pedal Osteomyelitis*

Patients frequently present without systemic illness and lack signs and symptoms (except the ulcer). Imaging studies are often used to confirm the diagnosis.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N= (%)</td>
<td>N= (%)</td>
<td>N= (%)</td>
</tr>
<tr>
<td>Clinical judgment</td>
<td>9/28 (32)</td>
<td>13/13 (100)</td>
<td>22/41 (54)</td>
</tr>
<tr>
<td>Ulcer area >2cm</td>
<td>15/27 (56)</td>
<td>12/13 (92)</td>
<td>27/40 (68)</td>
</tr>
<tr>
<td>Ulcer inflammation</td>
<td>10/28 (36)</td>
<td>10/13 (77)</td>
<td>20/41 (49)</td>
</tr>
<tr>
<td>Bone exposure</td>
<td>9/28 (32)</td>
<td>13/13 (100)</td>
<td>22/41 (54)</td>
</tr>
<tr>
<td>ESR >70mm/hr</td>
<td>5/18 (28)</td>
<td>10/10 (100)</td>
<td>15/28 (54)</td>
</tr>
<tr>
<td>noninflamed ulcers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 100 mm/hr all ulcers</td>
<td>6/26 (23)</td>
<td>13/13 (100)</td>
<td>19/39 (49)</td>
</tr>
</tbody>
</table>

Diabetic Pedal Osteomyelitis

Morphologic imaging
- X-ray
- CT
- MR

Functional imaging
- Bone scintigraphy
- Gallium scintigraphy
- Labeled leukocyte imaging
 - 111In-oxine
 - 99mTc-exametazime
 - 18F-FDG
3 Phase Bone Scan in Diabetic Foot Infections

Osteomyelitis Rt. Great Toe
3 Phase Bone Scan in Diabetic Foot Infections

Reactive Bone Rt. Great Toe

Flow Blood Pool Bone

Osteomyelitis Rt. Great Toe
3 Phase Bone Scan in Diabetic Foot Infections

Neuropathic Joint

Flow Blood pool Bone
3 Phase Bone Scan in Diabetic Foot Infections

Bilateral Neuropathic Joints

Flow Blood pool Bone
Bone Scintigraphy

<table>
<thead>
<tr>
<th>Series</th>
<th>n =</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seldin JNM 1985</td>
<td>30</td>
<td>94%</td>
<td>79%</td>
</tr>
<tr>
<td>Maurer Radiology 1986</td>
<td>13</td>
<td>75%</td>
<td>59%</td>
</tr>
<tr>
<td>Shults Am J Surg 1989</td>
<td>25</td>
<td>67%</td>
<td>43%</td>
</tr>
<tr>
<td>Keenan Arch Int Med 1989</td>
<td>77</td>
<td>100%</td>
<td>38%</td>
</tr>
<tr>
<td>Larcos AJR 1991</td>
<td>51</td>
<td>93%</td>
<td>43%</td>
</tr>
<tr>
<td>Newman JAMA 1991</td>
<td>41</td>
<td>69%</td>
<td>39%</td>
</tr>
<tr>
<td>Harvey JFAS 1997*</td>
<td>31</td>
<td>91%</td>
<td>40%</td>
</tr>
<tr>
<td>Blume JFAS 1997*</td>
<td>27</td>
<td>75%</td>
<td>29%</td>
</tr>
<tr>
<td>Palestro JFAS 2003*</td>
<td>25</td>
<td>90%</td>
<td>27%</td>
</tr>
</tbody>
</table>
Labeled Leukocyte Imaging in Diabetic Foot Infections

Right Great Toe Osteomyelitis

Dorsal

Plantar
Labeled Leukocyte Imaging in Diabetic Foot Infections

Labeled leukocytes *do* accumulate in the uninfected neuropathic joint. Activity on leukocyte images *cannot* automatically be equated with infection.
Labeled Leukocyte Imaging in Diabetic Foot Infections

- Labeled leukocyte uptake in uninfecte
 neuropathic joint attributed to:

 Inflammation
 Fracture
 Reparative processes
 Bone marrow
Neuropathic Joint
Hematopoietically Active Marrow

• ? Part of the inflammatory process
• ? Fracture repair
cartilage formation → blood vessel proliferation → marrow precursors → bone & bone marrow
Neuropathic Joint
Leukocyte/Marrow Imaging*

17 patients (13 women, 4 men)
20 sites of labeled leukocyte accumulation in mid/hind foot
 Unilateral in 14 patients
 Bilateral in 3 patients
Radiographic evidence of neuropathic joint in all 20 sites
Osteomyelitis in 4/20 sites

*Palestro et al., JNM 1998
Neuropathic Joint Leukocyte/Marrow Imaging*

(n=20)

<table>
<thead>
<tr>
<th></th>
<th>WBC/Marrow (+)</th>
<th>WBC/Marrow (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteomyelitis (+)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Osteomyelitis (-)</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

sensitivity: 3/3; specificity: 16/17; accuracy: 19/20 (0.95)

Palestro et al., JNM 1998
Leukocyte/Marrow Imaging

Neuropathic Joint

111In-WBC 99mTc-SC
Leukocyte/Marrow Imaging

Neuropathic Joint + Osteomyelitis
111InWBC or 99mTc-WBC?
99mTcWBC vs. 111InWBC

<table>
<thead>
<tr>
<th></th>
<th>99mTc-WBC</th>
<th>111In-WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>++++</td>
<td>++</td>
</tr>
<tr>
<td>Label stability</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Delayed imaging</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Dual isotope imaging</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>SPECT</td>
<td>++++</td>
<td>+</td>
</tr>
</tbody>
</table>

Slides are not to be reproduced without permission of author.
Table: 111In-WBC Scintigraphy

<table>
<thead>
<tr>
<th>Series</th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maurer</td>
<td>13</td>
<td>75%</td>
<td>89%</td>
</tr>
<tr>
<td>Radiology 1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schauwecker</td>
<td>35</td>
<td>100%</td>
<td>83%</td>
</tr>
<tr>
<td>J Nucl Med 1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keenan</td>
<td>77</td>
<td>100%</td>
<td>78%</td>
</tr>
<tr>
<td>Arch Int Med 1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larcos</td>
<td>51</td>
<td>79%</td>
<td>78%</td>
</tr>
<tr>
<td>AJR 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newman</td>
<td>41</td>
<td>89%</td>
<td>69%</td>
</tr>
<tr>
<td>JAMA 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palestro</td>
<td>25</td>
<td>80%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Ankle Surg 2003
99mTc-WBC Scintigraphy

<table>
<thead>
<tr>
<th>Series</th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>22</td>
<td>100%</td>
<td>70%</td>
</tr>
<tr>
<td>Foot Ankle Int 1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvey</td>
<td>52</td>
<td>86%</td>
<td>90%</td>
</tr>
<tr>
<td>J Foot & Ankle Surg 1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blume</td>
<td>27</td>
<td>90%</td>
<td>86%</td>
</tr>
<tr>
<td>J Foot & Ankle Surg 1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devillers</td>
<td>56</td>
<td>88%</td>
<td>97%</td>
</tr>
<tr>
<td>Poirier</td>
<td>83</td>
<td>93%</td>
<td>97%</td>
</tr>
<tr>
<td>Diabetes Metab 2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Love</td>
<td>14</td>
<td>80%</td>
<td>89%</td>
</tr>
<tr>
<td>EANM 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
111In-WBC vs 99mTc-WBC

<table>
<thead>
<tr>
<th>Test</th>
<th>N=</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>99mTc-WBC</td>
<td>14</td>
<td>80%</td>
<td>100%</td>
<td>93%</td>
</tr>
<tr>
<td>(4 hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99mTc-WBC</td>
<td>14</td>
<td>80%</td>
<td>100%</td>
<td>93%</td>
</tr>
<tr>
<td>(24 hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99mTc-WBC</td>
<td>14</td>
<td>40%</td>
<td>100%</td>
<td>79%</td>
</tr>
<tr>
<td>(4 + 24 hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111In-WBC</td>
<td>14</td>
<td>80%</td>
<td>89%</td>
<td>86%</td>
</tr>
<tr>
<td>(24 hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Love, EANM 2008
111In-WBC vs 99mTc-WBC*

Osteomyelitis left 1st & 3rd Metatarsals
(M. Morgagni)

Tc-WBC
4 hrs

Tc-WBC
24 hrs

In-WBC
24 hrs
$^{111}\text{In-WBC}$ vs $^{99m}\text{Tc-WBC}^*$

Osteomyelitis Rt. Great Toe
(E. Faecalis & Staph coagulase (-))

Tc-WBC
4 hrs

Tc-WBC
24 hrs

In-WBC
24 hrs
111In-WBC vs 99mTc-WBC*

Reactive Bone Left 5th Metatarsal
WBC & Bone Scintigraphy

Bone scintigraphy as a screening test

Bone + labeled leukocyte imaging
Bone Scan as Screening Test

<table>
<thead>
<tr>
<th></th>
<th>WBC</th>
<th>3PBo*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sens</td>
<td>8/10</td>
<td>9/10</td>
</tr>
<tr>
<td></td>
<td>(80%)</td>
<td>(90%)</td>
</tr>
<tr>
<td>Spec</td>
<td>10/15</td>
<td>4/15</td>
</tr>
<tr>
<td></td>
<td>(67%)</td>
<td>(27%)</td>
</tr>
</tbody>
</table>

Palestro et al. J Foot Ankle Surg; 2003

- WBC only: 25 scans (72% accuracy)
- WBC (25) + bone (25): 50 scans (80% accuracy)
- +Bone (20) + WBC (25): 45 scans (80% accuracy)
WBC + Bone Scintigraphy

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>WBC</th>
<th>WBC + Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keenan</td>
<td>63%</td>
<td>87%</td>
<td>87%</td>
</tr>
<tr>
<td>Arch Int Med 1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson</td>
<td>—</td>
<td>86%</td>
<td>91%</td>
</tr>
<tr>
<td>Foot Ankle Int 1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palestro</td>
<td>52%</td>
<td>72%</td>
<td>80%</td>
</tr>
<tr>
<td>J Foot & Ankle Surg 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WBC + Bone Scintigraphy

<table>
<thead>
<tr>
<th></th>
<th>WBC</th>
<th>3PBo</th>
<th>WBC/Bo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sens</td>
<td>8/10</td>
<td>9/10</td>
<td>8/10</td>
</tr>
<tr>
<td></td>
<td>(80%)</td>
<td>(90%)</td>
<td>(80%)</td>
</tr>
<tr>
<td>Spec</td>
<td>10/15</td>
<td>4/15</td>
<td>12/15</td>
</tr>
<tr>
<td></td>
<td>(67%)</td>
<td>(27%)</td>
<td>(75%)</td>
</tr>
<tr>
<td>Acc</td>
<td>18/25</td>
<td>13/25</td>
<td>20/25</td>
</tr>
<tr>
<td></td>
<td>(72%)</td>
<td>(52%)</td>
<td>(80%)</td>
</tr>
</tbody>
</table>

Paiset al. J Foot Ankle Surg; 2003
Osteomyelitis Rt. Great Toe

111In WBC

99mTc MDP
Reactive Bone Right Great Toe

111In WBC

99mTc MDP

BLOOD FLOW BLOOD POOL DELAYED IMAGE
Gangrene

111In WBC

99mTc MDP

BLOOD FLOW, BLOOD POOL, DELAYED IMAGE
SPECT CT

Improved diagnostic accuracy
Facilitates differentiation of soft tissue versus bone uptake
Poor resolution of 111In-WBC
Size of structures being evaluated
Osteomyelitis Rt. 5th Metatarsal

\(^{\text{111}}\text{In WBC}\)

Dorsal

Plantar
Osteomyelitis Rt. 5th Metatarsal

Dorsal

Plantar
Reactive Bone Rt. 5th Metatarsal

Dorsal

Plantar
FDG-PET/CT
FDG-PET & The Diabetic Foot

Schwegler et al. (Journal of Internal Medicine, 2008)

20 diabetic patients
All with pedal ulcers for at least 8 weeks
Low index of suspicion for osteomyelitis
No previous antibiotic treatment
Compared FDG-PET, 99mTc-MoAb, & MRI

Results
7/20 pts. had osteomyelitis
FDG-PET & The Diabetic Foot*

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>86% (6/7)</td>
<td>92% (12/13)</td>
<td>90% (18/20)</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>29% (2/7)</td>
<td>92% (12/13)</td>
<td>70% (14/20)</td>
</tr>
<tr>
<td>99mTcMoAb</td>
<td>29% (2/7)</td>
<td>85% (11/13)</td>
<td>65% (13/20)</td>
</tr>
</tbody>
</table>

*Schwegler et al. J of Internal Medicine, 2008
FDG-PET & The Diabetic Foot

Schwegler et al. Observations/Conclusions
1. MRI superior to FDG-PET & 99mTc MoAB in this series
2. Possible explanations for FDG-PET results
 a. Population with low degree of inflammation
 b. Insulin resistance (Bone uptake of FDG may be insulin dependent)
 c. Motion artifacts/limited spatial resolution
FDG-PET/CT & The Diabetic Foot

Keidar et al. (JNM, 2005)

14 diabetic pts. 18 sites
 7 forefoot
 11 mid/hindfoot
7 with non healing wounds/ulcers

Results

PET: identified 14 sites, but could not separate bone from soft tissue
PET/CT: localized uptake to bone in 8 sites, to soft tissue in 5 sites, & to osteoarthropathy in 1 site.
FDG-PET/CT & The Diabetic Foot

Keidar et al. Observations/conclusions

1. Blood glucose
 84-330 mg/dL (7 > 200 mg/dL)
 Did not affect PET/CT results

2. SUV max: 5.7 (1.7-11.1)

3. FDG-PET/CT allows precise diagnosis of osteomyelitis vs soft tissue infection.
FDG-PET & The Neuropathic Joint

Hopfner et al. (Foot & Ankle Intl, 2004)
Compared Hybrid PET, Ring PET & MRI in 16 diabetic patients

Surgical results: 39 neuropathic lesions
29 osseous: 0 osteomyelitis
15 soft tissue: 0 infection

Imaging results
Hybrid PET: 30/39 (77%)
Ring PET: 37/39 (95%)
MRI: 31/39 (79%)
FDG-PET & The Neuropathic Joint

Hopfner et al. Observations/Conclusions

1. Image quality better in pts. with blood glucose 80-120 mg/dL compared to pts. with blood glucose > 200 mg/dL (no impact on sensitivity)
2. Mean lesion SUV: 1.8 (0.5-4.1)
3. Ring PET & MRI comparable except in presence of metallic hardware, where PET is better
4. PET can differentiate neuropathic joint from osteomyelitis based on SUV
FDG-PET & The Neuropathic Joint

Basu et al. (Nucl Med Commun; 2007)
Evaluated ability of FDG-PET to differentiate neuropathic joint from osteomyelitis and soft tissue infection.

- 63 patients (Blood glucose levels < 200 mg/dL in 62 pts.)
- 17 neuropathic joints (1 osteomyelitis)
- 21 uncomplicated diabetic feet
- 20 normal nondiabetic feet
- 5 complicated diabetic feet with osteomyelitis
FDG-PET & The Neuropathic Joint

Basu et al. Observations/Conclusions
1. SUV max in normals/uncomplicated diabetic feet: 0.42 (0.2-0.7)
2. SUV max in neuropathic joint: 1.3 (0.7-2.4)
3. SUV max in neuropathic joint + osteomyelitis: 6.5
4. SUV max in pedal osteomyelitis: 4.38 (2.9-6.2)
5. FDG-PET useful in differentiating neuropathic joint & osteomyelitis & better than MRI in this series
Diagnosing Pedal Osteomyelitis*

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographs</td>
<td>54%</td>
<td>80%</td>
</tr>
<tr>
<td>3-Phase Bone</td>
<td>91%</td>
<td>46%</td>
</tr>
<tr>
<td>Labeled Leukocytes</td>
<td>88%</td>
<td>82%</td>
</tr>
<tr>
<td>MRI</td>
<td>92%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Diabetic Pedal Osteomyelitis

Radiographs

Initial imaging test
Relatively inexpensive
Readily available
Provide anatomic overview of the ROI
Identify pre-existing conditions that influence selection & interpretation of subsequent tests

Slides are not to be reproduced without permission of author.
Diabetic Pedal Osteomyelitis

Labeled leukocyte imaging
Radionuclide procedure of choice

111In or 99mTc

Most useful
Early, unsuspected, osteomyelitis
Monitoring response to medical therapy
Neuropathic joint (WBC/marrow)

Bone scan
Questionable value
Diabetic Pedal Osteomyelitis

SPECT/CT
- Likely useful in mid/hind foot
- ? forefoot

PET/CT
- ? 18F-FDG
- ? Other PET tracers