NEUROIMAGING IN EPILEPSY: WHY IS IT NECESSARY?

Harry T. Chugani, M.D.
Rosalie and Bruce Rosen Professor of Neurology
Chief, Pediatric Neurology
Director, PET Center

Children’s Hospital of Michigan
Wayne State University School of Medicine
Detroit, MI, USA
EPILEPSY

- AFFECTS 0.5%-1% OF POPULATION
- 70% OF EPILEPTICS CAN BE CONTROLLED WITH MEDICATION (USUALLY BY THE 3rd ‘REASONABLE’ MEDICATION ATTEMPTED)
- OF THE REMAINING 30%, ABOUT HALF (15%) ARE SURGICAL CANDIDATES
- THE OTHER 15% ARE NEITHER CONTROLLED NOR CAN BE HELPED WITH RESECTIVE SURGERY
- NEW MEDICATIONS, KETOGENIC DIET, VAGAL NERVE STIMULATOR
PRIMARY GENERALIZED VERSUS PARTIAL SEIZURES

- PRIMARY GENERALIZED SEIZURES HAVE A GENERALIZED ONSET ON EEG, i.e., NO FOCUS
 - CAN BE CONVULSIVE (e.g., tonic, tonic-clonic) OR NONCONVULSIVE (e.g., petit mal absence)
- PARTIAL SEIZURES HAVE A FOCAL ONSET.
 - CAN BE SIMPLE PARTIAL (no LOA) OR COMPLEX PARTIAL (with LOA)
 - CAN GENERALIZE INTO CONVULSION (i.e., secondary generalization)
- MYOCLONIC SEIZURES AND ATONIC SEIZURES CAN BE EITHER PARTIAL OR PRIMARY GENERALIZED
EPILEPSY: Diagnostic tests

- EEG
- SLEEP-DEPRIVED EEG
- MRI (except in typical absence 3 Hz s/w)
- VIDEO-EEG MONITORING (localization of seizure onset for surgical evaluation; differential diagnosis to determine if episodes are seizures; to determine if patient’s seizures are really controlled)
- PET SCAN OR ICTAL SPECT SCAN (surgical evaluation)
NEUROIMAGING IN EPILEPSY

• PRIMARY IMAGING MODALITY IS MRI
• CT/MRI TYPICALLY UNDERESTIMATE THE EPILEPTOGENIC REGION
• WHEN MALFORMATION IS PRESENT, IT MAY NOT BE ENTIRELY SEEN ON MRI
• SEIZURES OFTEN DO NOT ARISE FROM THE LESION ITSELF, BUT FROM SOME PERIPHERAL LOCATION
NEUROIMAGING IN EPILEPSY

• FUNCTIONAL IMAGING SHOWS BETTER CORRELATION WITH EPILEPTOGENIC ZONE
• PET: GLUCOSE METABOLISM, NEUROTRANSMITTERS & RECEPTORS
• SPECT: SISCOM SHOWS SEIZURE FOCUS FOR A SINGLE SEIZURE, DOES NOT MAP OUT THE EPILEPTOGENIC ZONE
VALUE OF NEUROIMAGING IN EPILEPSY

• GENERAL LOCALIZATION OF EPILEPTOGENIC REGION (MRI, PET, SPECT)
 – Beware of false positives, need EEG correlation

• ASSESS FUNCTIONAL INTEGRITY OF REGIONS OUTSIDE THE EPILEPTIC FOCUS, INCLUDING CONTRALATERAL HEMISPHERE (PET, SPECT)
 – Rule out surgical candidates (PET, SPECT)

• DIFFERENTIATE BETWEEN PRIMARY AND SECONDARY GENERALIZED EPILEPSY (PET)

• DEFINE MOTOR, LANGUAGE CORTEX, ALSO MEMORY TESTING (fMRI, PET)

• EVALUATE PROGRESSION OF DISEASE (PET, SPECT)
NONLESIONAL EXTRA-TEMPORAL LOBE EPILEPSY

• SEIZURE-FREE OUTCOME IN ONLY 50%-55% WITH 2-STAGE SURGERY: NO APPRECIABLE CHANGE IN PAST TWO DECADES. WHY??

• GRID PLACEMENT GUIDED BY SCALP EEG FINDINGS AND SEIZURE SEMIOLOGY

• PET FURTHER GUIDES GRID PLACEMENT ---> CLASS 1 OUTCOME IN AT LEAST 80%
FDG PET in Neocortical Epilepsy
Focal hypometabolism with normal high-resolution MRI

8 year old girl, with uncontrolled seizures
Ictal onset in right central region (C4-F4) Pathology: Cortical dysplasia
FDG PET in Neocortical Epilepsy: Multilobar Hypometabolism

Intracranial EEG: R frontal onset, R temporal spread
SEIZURE ONSET AT BORDERZONE OF GLUCOSE HYPOMETABOLISM

- seizure onset
- early spread
- inactive electrodes

hypometabolism

Children's Hospital of Michigan, Wayne State University, Detroit

Juhász et al.: Ann Neurol 2000
Expansion of glucose hypometabolism with persistent epilepsy

1st FDG PET scan
4.8 years
3 seizures/week

2nd FDG PET scan
6.5 years
2-3 seizures/day
SURGERY FOR INFANTILE SPASMS & WEST SYNDROME

• PET IDENTIFIES FOCAL CORTICAL DYSGENESIS IN CRYPTOGENIC CASES FOR SURGICAL TREATMENT (Chugani et al., Ann Neurol 1990): 5 patients with normal MRI, focal PET lesions

• SURGERY FOR INTRACTABLE INFANTILE SPASMS (Chugani et al., Epilepsia 34:764-71, 1993): 23 patients (17 with active infantile spasms, 6 with recent spasms): 15 became seizure-free, 3 had 90% seizure reduction, 1 had 75% reduction, 4 showed no benefit from surgery
Infantile Spasms

Children’s Hospital of Michigan
Wayne State University, Detroit

Slides are not to be reproduced without permission of author.
SURGERY FOR INFANTILE SPASMS & WEST SYNDROME

- Metabolic lesions not always shown early on MRI
- Best surgical candidates have unilateral MRI or PET lesion
- Structural or functional localization should be concordant with EEG focus
- Extent of lesion (‘nociferoius’ cortex) must be defined
- Contralateral hemisphere should be normal
Infantile Spasms: Metabolic Patterns

Surgical Candidate - 20%

Multifocal - 65%

Bitemporal/Autism - 10%

Metabolic/Neurogenetic - 5%
TIMING OF MRI IS IMPORTANT

At 6 months of age

At 3 years of age

Sankar R, AJNR, 1995
Increased cortical glucose metabolism due to frequent interictal spiking: false lateralization!!!
PET SCANNING IN EPILEPSY

- $[^{11}C]C$ARFENTANIL: binds to mu-opiate receptors
- $[^{11}C]D$OXEPINE: binds to histamine H1 receptors
- $[^{11}C]F$LUMAZENIL: binds to benzodiazepine site on GABA-A receptor
- ALPHA$[^{11}C]M$ETHYL-L-TRYPTOPHAN: measures tryptophan metabolism by serotonin and kynurenine pathways
Area of decreased flumazenil binding is smaller than glucose hypometabolism

EEG: left temporal-parietal focus

FDG

FMZ
AMT PET in Tuberous Sclerosis Identifies Epileptogenic Lesion(s)

FDG PET

Multiple areas of hypometabolism indicate multiple tubers

AMT PET

Epileptogenic tuber with increased uptake
NEUROIMAGING IN EPILEPSY

• GENERAL LOCALIZATION OF EPILEPTOGENIC REGION (MRI, PET, SPECT)
 – Beware of false positives, need EEG correlation
• ASSESS FUNCTIONAL INTEGRITY OF REGIONS OUTSIDE THE EPILEPTIC FOCUS, INCLUDING CONTRALATERAL HEMISPHERE (PET, SPECT)
 – Rule out surgical candidates (PET, SPECT)
• DIFFERENTIATE BETWEEN PRIMARY AND SECONDARY GENERALIZED EPILEPSY (PET)
• DEFINE MOTOR, LANGUAGE CORTEX, ALSO MEMORY TESTING (fMRI, PET)
• EVALUATE PROGRESSION OF DISEASE (PET, SPECT)
Involvement of Extratemporal Areas In Temporal Lobe Epilepsy

Children’s Hospital of Michigan
Wayne State University, Detroit

Slides are not to be reproduced without permission of author.
4 YR 4M OLD BOY WITH SEVERE EPILEPSY AND AUTISM
4 YR OLD BOY, LANDAU-KLEFFNER SYNDROME

FDG PET
HEMIMEGALENCEPHALY

Unilateral

11 y.o., M

Mild contralateral involvement

7 m.o., M

Severe bilateral

22 y.o., M
NEUROIMAGING IN EPILEPSY

• GENERAL LOCALIZATION OF EPILEPTOGENIC REGION (MRI, PET, SPECT)
 – Beware of false positives, need EEG correlation

• ASSESS FUNCTIONAL INTEGRITY OF REGIONS OUTSIDE THE EPILEPTIC FOCUS, INCLUDING CONTRALATERAL HEMISPHERE (PET, SPECT)
 – Rule out surgical candidates (PET, SPECT)

• DIFFERENTIATE BETWEEN PRIMARY AND SECONDARY GENERALIZED EPILEPSY (PET)

• DEFINE MOTOR, LANGUAGE CORTEX, ALSO MEMORY TESTING (fMRI, PET)

• EVALUATE PROGRESSION OF DISEASE (PET, SPECT)
PARTIAL EPILEPSY vs. PRIMARY GENERALIZED EPILEPSY

- EEG: GENERALIZED EPILEPTIFORM DISCHARGES

- ANTICOVULSANTS FOR PRIMARY GENERALIZED EPILEPSY NOT HELPFUL

Children’s Hospital of Michigan
Wayne State University, Detroit
NEUROIMAGING IN EPILEPSY

• GENERAL LOCALIZATION OF EPILEPTOGENIC REGION (MRI, PET, SPECT)
 – Beware of false positives, need EEG correlation
• ASSESS FUNCTIONAL INTEGRITY OF REGIONS OUTSIDE THE EPILEPTIC FOCUS, INCLUDING CONTRALATERAL HEMISPHERE (PET, SPECT)
 – Rule out surgical candidates (PET, SPECT)
• DIFFERENTIATE BETWEEN PRIMARY AND SECONDARY GENERALIZED EPILEPSY (PET)
• DEFINE MOTOR, LANGUAGE CORTEX. ALSO MEMORY TESTING (fMRI, PET)
• EVALUATE PROGRESSION OF DISEASE (PET, SPECT)
NEUROIMAGING IN EPILEPSY

- GENERAL LOCALIZATION OF EPILEPTOGENIC REGION (MRI, PET, SPECT)
 - Beware of false positives, need EEG correlation
- ASSESS FUNCTIONAL INTEGRITY OF REGIONS OUTSIDE THE EPILEPTIC FOCUS, INCLUDING CONTRALATERAL HEMISPHERE (PET, SPECT)
 - Rule out surgical candidates (PET, SPECT)
- DIFFERENTIATE BETWEEN PRIMARY AND SECONDARY GENERALIZED EPILEPSY (PET)
- DEFINE MOTOR, LANGUAGE CORTEX, ALSO MEMORY TESTING (fMRI, PET)
- EVALUATE PROGRESSION OF DISEASE (PET, SPECT)
STURGE-WEBER SYNDROME:
Rapid Progression of Severe
Hypometabolism is Associated with Good
Cognitive Outcome

5 months 38 months 5 years
Extent of Hypometabolism vs. Cognitive Functions

T-P-O Hypometabolism
IQ = 55

Hemispheric Hypometabolism
IQ = 79
Early, rapid hemispheric progression in SWS

- “autohemispherectomy”
- often well controlled seizures
- relatively preserved cognitive functions
- functional reorganization, likely in the contralateral hemisphere

40 months old boy
Verbal IQ: 93
FDG PET in children with SWS and recent onset seizures: transient (interictal) hypermetabolism

Chugani et al., 1989

- Increased glucose metabolism (interictal!) in some infants
- Switched to decreased metabolism on follow-up PET

FDG PET (baseline)

FDG PET (follow-up)

4 months old

1 year old
Increased cortical glucose metabolism in contralateral visual cortex

Patients with severe ipsilateral occipital hypometabolism

Control
CONCLUSION

• VARIOUS NEUROIMAGING MODALITIES PLAY COMPLEMENTARY ROLES IN THE EVALUATION AND TREATMENT OF EPILEPTIC DISORDERS
• NEUROIMAGING MUST NOT BE USED AS AN INDEPENDENT TOOL FOR EPILEPSY
• RATHER, NEUROIMAGING FINDINGS SHOULD BE CORRELATED WITH SEIZURE SEMIOLOGY AND EEG FINDINGS FOR CONCORDANCE
• REFINEMENT OF THE NEUROIMAGING APPROACH WILL ALLOW PRECISE DEFINITION OF EPILEPTOGENIC BRAIN REGIONS TO BE RESECTED AND THOSE TO BE SPARED