SKELETAL IMAGING WITH
\(^{18}\text{F-Fluoride PET}\)

Frederick D. Grant, M.D.
Children’s Hospital, Boston
Harvard Joint Program in Nuclear Medicine
Bone Imaging Agents

<table>
<thead>
<tr>
<th></th>
<th>keV</th>
<th>$T_{1/2}$</th>
<th>Imaging Delay</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-85</td>
<td>514</td>
<td>65 d</td>
<td>3-7 d</td>
<td>1961</td>
</tr>
<tr>
<td>Sr-87m</td>
<td>388</td>
<td>2.8 h</td>
<td>(1-3 h)</td>
<td>1969</td>
</tr>
<tr>
<td>F-18</td>
<td>(511)</td>
<td>1.8 h</td>
<td>0.5 – 1 h</td>
<td>1962</td>
</tr>
<tr>
<td>sodium fluoride</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc-99m phosphates</td>
<td>140</td>
<td>6 h</td>
<td>4-6 h</td>
<td>1971</td>
</tr>
<tr>
<td>Tc-99m diphosphonates</td>
<td>140</td>
<td>6 h</td>
<td>3 h</td>
<td>1973</td>
</tr>
</tbody>
</table>
BLOOD CLEARANCE OF SKELETAL IMAGING AGENTS

Strontium ($t_{1/2}$ 18-24 h)
Polyphosphate ($t_{1/2}$ 8.1 h)
Pyrophosphate ($t_{1/2}$ 10.5 h)
Diphosphonate ($t_{1/2}$ 3.2 h)
Fluoride ($t_{1/2}$ 1.3 h)

Skeletal Imaging with 18F-NaF PET

- 18F-sodium fluoride approved by FDA in 1972
 - Gamma camera imaging of 511 keV photons
- Rapidly replaced by 99mTc-diphosphonates
 - Anger camera optimized for 140 keV
 - generator production of 99mTc
 - availability of 99mTc bone agent kits
- With clinical adoption of PET imaging
 - PET cameras now widely available
 - 18F shipping logistics improved
- Re-visit use of 18F-NaF for bone imaging
Skeletal Imaging: Utility of 18F-NaF PET

- Primary osseus tumors
- Skeletal metastases
- Benign skeletal disease
 - Sports Medicine
 - Fractures
- Other indications?
- Concerns and Issues
8 year-old boy with Ewing’s sarcoma

18F-NaF

99mTc-MDP

Slides are not to be reproduced without permission of author.
Imaging skeletal metastases

- 99mTc-MDP planar scintigraphy
- 99mTc-MDP SPECT
- 18F-NaF PET

COURTESY Abass Alavi, M.D.
Detecting Skeletal Metastases with 18F-NaF PET

- 99mTc-MDP SPECT is more sensitive than planar SPECT, not planar, 99mTc-MDP imaging is the appropriate comparison for 18F-NaF PET
- 18F-NaF PET vs. 99mTc-MDP SPECT
 - 18F-NaF PET is more sensitive
 - 18F-NaF PET has higher image quality
 - 18F-NaF PET and 99mTc-MDP SPECT have similar specificities
- Both 18F-NaF PET and 99mTc-MDP SPECT need correlative imaging
Bone Imaging with PET

Imaging Skeletal Metastases:
18F-NaF and 18F-FDG PET

- 18F-NaF and 18F-FDG both have higher sensitivity than 99mTc-MDP
- 18F-FDG more likely to detect:
 - non-osseous disease
 - bone marrow metastases
 - small lytic lesions
- 18F-NaF is specific for cortical bone involvement
- 18F-NaF more likely to detect:
 - tumors with low FDG avidity
27 year-old woman receiving chemotherapy for metastatic breast carcinoma

18F-NaF PET

18F-FDG PET
Flare response in vertebra T7 after 4 cycles of chemotherapy for breast cancer.

18F-NaF PET

18F-FDG PET

Initial 12 weeks later
2 year-old girl with neuroblastoma
18F-NaF Bone Imaging: Sports Medicine

18 year-old female runner
Training for a marathon
Severe lower leg and foot pain
18F-NaF Bone Imaging: Sports Medicine

18 year-old female runner
Training for a marathon
Severe lower leg and foot pain

Scan completed ~1 hour after arrival in Nuclear Medicine

Widespread stress injury in both tibiae, right fibula, both feet
18F-NaF Bone Imaging: Sports Medicine

12 year-old gymnast with lower back pain
18F-NaF Bone Imaging: Sports Medicine

12 year-old gymnast with lower back pain
Left pars stress in vertebra L5
21 year-old runner with lower back pain
21 year-old runner with lower back pain
Increased uptake left sacro-iliac joint, likely stress injury
17 year-old male athlete with lower back pain that worsens with hyperextension

Increased F-18 uptake suggests right pars stress in vertebra L5

Corresponds to a non-displaced pars fracture
18F-NaF Bone PET: CT co-registration

15 year-old female athlete with back pain after landing from a high jump

Increased F-18 uptake corresponds to a wedge compression fracture of vertebra L3
Detecting Skeletal Metastases with 18F-NaF PET/CT

- Specificity of 18F-NaF PET improved by CT
- 18F-NaF PET/CT has higher specificity than 99mTc-MDP SPECT

BUT:

- 99mTc-MDP SPECT is changing
 - improved image processing (software)
 - how will 99mTc-MDP SPECT/CT perform?

18F-NaF PET/CT typically not head-to-toe
3 month old boy brought to ED by his mother; she reports that the child is not using his right arm after an older sibling pushed him off a bed
Non-accidental Trauma / Child Abuse

Multiple sites of uptake corresponding to fractures on skeletal survey. 18F-NaF bone PET improves sensitivity and specificity of skeletal survey.
18F-NaF Bone PET: Other Indications

• Femoral head osteonecrosis
• Bone graft viability
• Quantitative bone turnover studies
• Three-phase bone scan??
18F-NaF Skeletal PET: Concerns and Issues

- Dosimetry
- Departmental Workflow
- Reimbursement
18F-NaF Skeletal PET: Dosimetry compared to 99mTc-MDP

- **Radiation**
 - 18F: positron (local) + 511keV gamma
 - 99mTc: 140 keV gamma
- **Physical Half-life**
 - 18F: 110 minutes
 - 99mTc: 6 hours
- **Bone Uptake and Soft Tissue Clearance**
 - Both have ~50% uptake in bone
 - 18F soft tissue clearance faster than 99mTc-MDP
18F-NaF Skeletal PET: Dosimetry compared to 99mTc-MDP

<table>
<thead>
<tr>
<th>70 kg Adult</th>
<th>99mTc-MDP</th>
<th>18F-NaF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administered Dose (mCi)</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>(MBq)</td>
<td>518</td>
<td>148</td>
</tr>
<tr>
<td>Effective Dose (mSv)</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Bladder Wall (mGy)</td>
<td>24.9</td>
<td>32.6</td>
</tr>
<tr>
<td>Bone surfaces (mGy)</td>
<td>32.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Red Marrow (mGy)</td>
<td>4.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

F. Fahey IN Grant, et al. JNM 2008
18F-NaF PET vs. 99mTc-MDP: Age-Dependent Effective Dose (mSv)

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Weight (kg)</th>
<th>99mTc-MDP (0.2 mCi/kg)</th>
<th>18F-NaF (0.06 mCi/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>70</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>15</td>
<td>55</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>2.6</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>2.0</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>9.8</td>
<td>2.0</td>
<td>3.6</td>
</tr>
</tbody>
</table>

18F-NaF Skeletal PET: Concerns and Issues

- Dosimetry
- Departmental Workflow
- Reimbursement
- Imaging Workflow with 18F-NaF
 - faster turnaround than 99mTc-MDP
 - facilitates same day follow-up
 - requires PET scanner availability
- Image Acquisition with 18F-NaF
 - less patient motion with faster PET scan
 - no motion correction with PET
 - sedation of very young children
18F-NaF Skeletal PET: Concerns and Issues

• Dosimetry
• Departmental Workflow
• Reimbursement
 – Depends on insurance company
 – Very difficult if SPECT is a struggle
 – Separate CPT code might facilitate
 – Probably the biggest hurdle to the routine use of 18F-NaF bone scans
Indications for 18F-Fluoride Skeletal PET

- Oncology
 - Skeletal metastatic disease
 - Identification
 - Assessing response to therapy
 - Bone pain in cancer patients
 - Primary bone tumors

- Benign Bone Disease
 - Sports Medicine (back, extremities)
 - Fractures

- Others?
Bone Imaging with 18F-NaF Skeletal PET

• Higher quality images than 99mTc-MDP SPECT, with similar radiation dose
• Potential for improved workflow
• More accurate than 99mTc-MDP SPECT in detecting both benign and metastatic skeletal disease
• Unresolved Questions:
 – How will 99mTc-MDP SPECT/CT compare?
 – Will reimbursement issues be resolved?