Imaging Hypoxia with Cu-ATSM PET.

Farrokh Dehdashti, M.D.
Michael J. Welch, Ph. D.
Mallinckrodt Institute of Radiology
Washington University

This work was supported by National Institute of Health
R21 Grant CA81525 and DOE Grant DE-FG02-87
Clinical Study

• Patients with newly diagnosed non-small cell lung cancer (NSCLC) being evaluated for initial treatment with radiation therapy, chemotherapy or both

• Lesions ≥ 1.5 cm in diameter

• 20 patients (mean age 68 years, range 55 - 84 years) with stages IA-IIIB

• CT follow-up (1 month, 3 months and 2 years)
\textbf{60Cu-ATSM}

- Human biodistribution and dosimetry
 - Human dosimetry based on human biodistribution data (liver is the dose-limiting organ with average radiation dose of 0.064 mGy/MBq)
 - Dynamic studies to allow generation of time-activity curves of the organ of interest and whole-body imaging at various times
 - Arterial blood samples (or imaging of the heart) to calculate blood residence time
Cu Dosimetry

Table 5. Internal organ radiation doses for ^{60}Cu, ^{61}Cu, ^{62}Cu, and ^{64}Cu. Radiation doses for ^{61}Cu, ^{62}Cu, and ^{64}Cu are derived from the measured biodistribution of ^{60}Cu.

<table>
<thead>
<tr>
<th>Organ</th>
<th>^{60}Cu (mGy/MBq)</th>
<th>^{61}Cu (mGy/MBq)</th>
<th>^{62}Cu (mGy/MBq)</th>
<th>^{64}Cu (mGy/MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>0.064</td>
<td>0.275</td>
<td>0.017</td>
<td>0.390</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.020</td>
<td>0.067</td>
<td>0.005</td>
<td>0.088</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.017</td>
<td>0.048</td>
<td>0.003</td>
<td>0.047</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>0.016</td>
<td>0.051</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>Adrenals</td>
<td>0.013</td>
<td>0.032</td>
<td>0.003</td>
<td>0.032</td>
</tr>
<tr>
<td>Heart wall</td>
<td>0.012</td>
<td>0.026</td>
<td>0.004</td>
<td>0.029</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.012</td>
<td>0.030</td>
<td>0.003</td>
<td>0.056</td>
</tr>
<tr>
<td>Upper large intestine</td>
<td>0.010</td>
<td>0.022</td>
<td>0.002</td>
<td>0.022</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.009</td>
<td>0.020</td>
<td>0.002</td>
<td>0.021</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.009</td>
<td>0.020</td>
<td>0.002</td>
<td>0.021</td>
</tr>
<tr>
<td>Total body</td>
<td>0.009</td>
<td>0.022</td>
<td>0.003</td>
<td>0.026</td>
</tr>
<tr>
<td>ED (mSv/MBq)</td>
<td>0.011</td>
<td>0.029</td>
<td>0.003</td>
<td>0.036</td>
</tr>
</tbody>
</table>

56-min after injection
Tumor Imaging

• Arterial blood sampling starting immediately after injection of 60Cu-ATSM up to 1 hr to assess the behavior of 60Cu-ATSM in the blood
 – Rapid movement of 60Cu-ATSM into tissues occurs in the first 5 min
 – 60Cu-ATSM blood levels are remarkably stable from 10 to 60 min
Graph A: The percentage of radioactivity extracted into the octanol phase over time. Extracted activity represents intact [Cu-60]ATSM.

Graph B: The overall amount of radioactivity (mCi) contained within each ml of blood over time.
Tumor Imaging

• **Analysis of 60Cu-ATSM**
 – Kinetic modeling - a classic 3-compartment model identical to that used for FDG kinetic analysis (Patlak, $K = (K1\cdot k3)/(k2+k3)$)

The $K1$ and $k2$ represent transport in and out of the tissue, respectively. The $k3$ parameter represents the rate of trapping of Cu-ATSM in the cell
• 3 Compartment: no difference in k3 ("trapping") value between the tumor (k3 = 0.052/min) and muscle (k3 = 0.062/min)

• The slopes: clear different between tumor and muscle (when blood activity is constant, the estimate of net trapping of a radiotracer in a tumor (K), is merely the slope of tumor activity divided by blood activity)

• The final estimate (slope index) of ⁶⁰Cu-ATSM tumor trapping requires dividing the tumor slope by the muscle average activity
Tumor Imaging

• Analysis of 60Cu-ATSM
 – The ratios of maximum tumor-to-mean muscle uptake (T/M)
 – Maximum standardized uptake value (SUV$_{max}$), the ratio of decay-corrected activity per unit volume tissue to the administered activity

• Estimates of 60Cu-ATSM uptake in NSCLC
 – T/M - 2.3 ± 1.0
 – SUV - 3.1 ± 1.0
 – Peak slope index (% change/min) - 2.3 ± 1.3%/min
Does the tumor uptake of $^{60}\text{Cu-ATSM}$ predict response to therapy?

Does the tumor uptake of $^{60}\text{Cu-ATSM}$ predict survival?
Measurement of Hypoxia with 60Cu-ATSM-PET: NSCLC

- 60Cu-ATSM (T/M, not SUV) predictive of response to therapy by RECIST (n = 14)
- T/M differed significantly in responders (1.5 ± 0.4) and nonresponders (3.4 ± 0.8) ($p = 0.002$)
- Peak slope index was significantly lower in responders compared with nonresponders ($1.7 \pm 1.2\%/\text{min}$ vs. $3.6 \pm 0.95\%/\text{min}$) ($p = 0.02$)
 - All responders (n=8) had T/M < 3.0
 - All nonresponders (n=6) had T/M ≥ 3.0

Responder

Pre-therapy FDG-PET

Pre-therapy Cu-ATSM-PET

Pre-therapy CT

Post-therapy CT

SUV = 4.9

T/M = 1.3

Non-Responder

Pre-therapy FDG-PET

SUVmax = 17

Pre-therapy Cu- ATSM-PET

T/M = 3.6

Pre-therapy CT

Post-therapy CT

60Cu-ATSM-PET in Cervical Cancer

- Cervical cancer (n = 38, 1b1-IIIB)
- 60Cu-ATSM uptake (T/M & peak slope index) was predictive of disease-free and overall survival
 - T/M of 3.5 or (5 %/min peak slope index) distinguished patients with better prognosis from those with poorer prognosis

Survival Based on 60Cu-ATSM Uptake in Cervical Cancer (n=27)

Dehdashti et al., Int J Radiol Oncol Biol Ohys 2003; 55:1233
Responder

FDG-PET

SUV = 13.3

Pre-therapy

60Cu-ATSM-PET

T/M = 2.3
Peak slope index = 2.2%/min
Non-Responder

FDG-PET
Pre-therapy
SUV = 11.7
Post-therapy

60Cu-ATSM-PET
Pre-therapy
T/M = 5.1
Peak slope index = 7.1%/min
Measurement of Hypoxia with 60Cu-ATSM-PET

- Rectal cancer: 60Cu-ATSM prior to neoadjuvant chemoradiotherapy (n = 17)
 - 60Cu-ATSM (T/M) was predictive of survival
 » Patients with T/M < 2.6 have better overall survival than patients with T/M > 2.6
 - T/M correlated with downstaging after chemoradiotherapy
 » The pretherapy 60Cu-ATSM uptake was lower in tumors that downstaged after therapy (2.2 ± 0.8 vs. 3.3 ± 0.5, p = 0.03)

Unpublished data
Survival Based on 60Cu-ATSM Uptake in Rectal Cancer (n=17)

Dietz et al. Dis Colon Rectum, in press
Responder

60Cu-ATSM-PET

$T/M = 2.3$

FDG-PET/CT
Non-Responder

$^{60}\text{Cu-ATSM-PET}$

T/M = 3.1

FDG-PET/CT
Can Cu-ATSM be used to Direct Therapy?
Cu-ATSM-Directed Radiation Therapy

Gross Tumor Volume

CT

60Cu-ATSM-PET

Tumor Hypoxic Map

Chen et al., IJROBP 2001; 49:1171-1182
How to Make Cu-ATSM Method Available Worldwide?
Comparison of 60Cu- and 64Cu-ATSM

- $T_{1/2}$ of 60Cu (23.7 min) limits widespread clinical use – requires on-site cyclotron
- $T_{1/2}$ of 64Cu (12.7 hrs) allows for regional distribution and possible delayed imaging
- Image blurring increases with positron energy
 - Better spatial resolution with 64Cu than 60Cu (4.7 vs. 6.3 mm)
- 64Cu-ATSM has potential as a therapeutic agent

Comparison of 60Cu-ATSM and 64Cu-ATSM (IND 62,675)

- Assessed quality of 60Cu-ATSM-PET and 64Cu-ATSM-PET images
- Crossover study of 10 patients with cervical CA (IB1 in 1, 1B2 in 1, IIB in 3, IIIA in 1 and IIIB in 4)
- Patients studied with 60Cu-ATSM-PET and 64Cu-ATSM-PET in 2 separate days (range 1 - 9 days, averaged 5.8 days)
Comparison of ^{60}Cu-ATSM and ^{64}Cu-ATSM (IND 62,675)

- **Analysis:**
 - Subjective – comparable; but, ^{64}Cu-ATSM images less noisy
 » ^{64}Cu-ATSM-PET were less noisy than ^{60}Cu-ATSM-PET
 - T/M evaluation
 » T/M of 5.9 ± 1.6 for ^{60}Cu-ATSM and 7.3 ± 1.9 for ^{64}Cu-ATSM ($r = 0.95$, $P < 0.0001$)
 » Generally better target-to-background ratio
 (tumors seen more clearly on ^{64}Cu-ATSM-PET in most cases)

Comparison of 60Cu-ATSM and 64Cu-ATSM (IND 62,675)

- Correlation of T/M for 60Cu-ATSM and 64Cu-ATSM

![Graph showing correlation between T/M ratio for 60Cu-ATSM and 64Cu-ATSM. The graph includes a linear trend line with an $R = 0.9$ and $P < 0.0001$.](image-url)
Fused FDG-PET/CT

FDG-PET

60Cu-ATSM-PET

64Cu-ATSM-PET
Summary

• Tumor hypoxia can successfully be measured by imaging $^{60}\text{Cu-ATSM-PET}$
 – Feasible to study hypoxia of human tumors in vivo
 – Favorable radiation dosimetry
 – Clinical evidence that $^{60}\text{Cu-ATSM-PET}$ is:
 » Predictive of response to therapy
 » Predictive of survival
Summary

• Tumor hypoxia can successfully be measured by imaging $^{60}\text{Cu-ATSM-PET}$
 – $^{60}\text{Cu-ATSM-PET}$ with CT co-registration has the potential to direct therapy
 – $^{60}\text{Cu-ATSM-PET}$ has the potential to monitor the effect of therapeutic strategies known to overcome hypoxia

• $^{64}\text{Cu-ATSM}$ is an optimal substitute for $^{60}\text{Cu-ATSM}$
Collaborators

- Barry A. Siegel
- Perry W. Grigsby
- Jason S. Lewis
- Ramaswamy Govindan

Thank You