Brain Imaging SPECT & PET: Technical Factors

Doug Vines BSc, MRT(N), CNMT, PET
Radiation Medicine Program, Princess Margaret Hospital
Assistant Professor, Dept. Radiation Oncology,
University of Toronto, Toronto, Ontario, Canada
Objective

To review the basic technical factors involved with SPECT and PET brain imaging.
What year was it?

Super Bowl - Dallas Cowboys

World Series - Toronto Blue Jays

Stanley Cup - Montreal Canadiens

1993

Nobel Peace Prize - Nelson Mandela

Oscar Best Movie - Unforgiven (Clint Eastwood)
SPECT & PET
Technical Factors

- Patient
- radioPharmaceutical
- Protocol
- Processing
Technical Factors

- Patient
- symptoms determine which
- radioPharmaceutical
- Protocol
- Processing
Technical Factors

Patient

radioPharmaceutical

Protocol

Processing
Patient

Preparation:
- PET - fasting 4hr & blood glucose
- history questionnaire for both SPECT & PET

Injection:
- eyes open, quiet room
- 3-way stopcock for saline rinse

Uptake time:
- both SPECT & PET minimum 30 min
Patient

Positioning:

- single scan or multi-scan study
- head holder, SPECT - shoulders slouched
- head straightening, tilt, & lasers
Patient

Positioning:

- gantry tilt (PET)
- Immobilization
Patient

Positioning:

- SPECT radius of rotation
 - closer better
 - fixed intervals with fan-beam collimators
Technical Factors

- Patient
- radioPharmaceutical
- Protocol
- Processing
radioPharmaceuticals

SPECT: rCBF

(ECD)

(HMPAO)
radioPharmaceuticals

PET: rCMRG
- FDG (2- 18F Fluoro-2-Deoxy-D-glucose)

Both SPECT & PET:
- preparation
- quality control
- doses
Technical Factors

- Patient
- radioPharmaceutical
- Protocol
- Processing
Protocols

radioPharmaceutical dependant:
 • static or dynamic

Hardware dependant:
 • SPECT
 • single or multi-head, type of collimators (fan-beam)
 • transmission scans
 • SPECT-CT
 • PET
 • dedicated (transmission)
 • PET-CT
Protocols

Acquisition parameters:

• **SPECT**
 • matrix (128), zoom, degrees (3)
 • time (15 min) single or multi-acquisition
 • motion (continuous)
 • transmission scan, or CT

• **PET**
 • transmission scan
 • emission scan (3D mode), time (15 min)
 • list mode?
Technical Factors

- Patient
- radioPharmaceutical
- Protocol
- Processing
Processing

Reconstruction SPECT & PET:
 - FBP or Iterative (OSEM)

Filter selection SPECT & PET:
 - 3-Dimensional post-filter
 - SPECT - optimize to each patient
 - Butterworth (low pass), order fixed (5), vary cutoff frequency to total counts in cerebrum
Filter Optimization

<table>
<thead>
<tr>
<th>Cts./pixel</th>
<th>F.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>800-1100</td>
<td>0.23</td>
</tr>
<tr>
<td>1100-1400</td>
<td>0.24</td>
</tr>
<tr>
<td>1400-1700</td>
<td>0.25</td>
</tr>
<tr>
<td>1700-2500</td>
<td>0.26</td>
</tr>
<tr>
<td>2000-2300</td>
<td>0.27</td>
</tr>
<tr>
<td>2300-2600</td>
<td>0.28</td>
</tr>
<tr>
<td>2600-2900</td>
<td>0.29</td>
</tr>
<tr>
<td>2900-3200</td>
<td>0.30</td>
</tr>
</tbody>
</table>
SPECT

Butterworth (order 5) cutoff frequency:

0.23 0.3 0.4
Processing

Attenuation correction SPECT & PET:

- manual (Chang method), measured by transmission scan, or CT

PET

no AC CTAC
Processing

Scatter correction:

• PET - required for 3D mode
 • various methods, vendor specific

• SPECT - optional
 • various methods, vendor specific
Processing

Reorientation & reformatting:

rotation

transaxial

trans obliq
Processing

Reorientation & reformatting:

- software to automatically reorient slices
 - standardized (Talairach stereotactic atlas)
 - uses ACPC (ant commissure post commissure) line, anatomy is in proportion to this

- or visually, using internal anatomical landmarks
 - cantho-meatal (CM) line parallel to ACPC line, 3 landmarks: frontal pole, sub-thalamic, occipital pole
 - determine angle of CM line, reorient transaxial slices to angle
Processing

Reorientation & reformatting:

MRI

ECD
Processing

Reorientation & reformatting:
Processing

Reorientation & reformatting:

123I - CIT

123I - IBF
Processing

Reorientation & reformatting:
Radioactive surface markers

Whatman no.1 filter paper, 1 - 2 mm square

- 1 - 2.5 µCi (37 - 92.5 KBq) 99mTc
Radioactive markers

- Outer canthus of eye
- External auditory meatus
Processing

Reorientation & reformatting:

123I - CIT
Summary

High quality brain imaging using SPECT & PET are dependant on many technical factors.

Selection of the proper and optimized technical factors helps ensure high quality brain images.
References

SNM Procedure Guidelines: Brain Perfusion Single Photon Emission Computed Tomography (SPECT) Using Tc-99m Radiopharmaceuticals 2.0

Thank-you!

Questions?